.Section'2. A

: -In"eg-i'fé"",‘i"_’tIri -

Numerical integration of a function f(x) from x=a to x=b is writ-
ten as

b n—1
1= roax=Fwsw)
a i=0

where w; are the weights and x; are abscissas.
The integration schemes can be classified into two schemes:

Simple methods: Here we choose x; as evenly spaced n
points, and then compute w,. If error is beyond admissible limit,
then the number of points is increased.

Complex methods: Here x; and w; are chosen in such a way
the integral has minimum error.

Newton-Cotes Formulas

Newton-Cotes scheme belongs to the class of simple meth-
ods. Here we divide the interval (a, b) into (n — 1) equal divisions,
that is, (b — a)/(n — 1) = h. The abscissas are located at x; = a + jh

wherej =0:(n—1).

We approximate the function f(x) using the Lagrange interpola-
tion:

P(x) =) LXf(x),

which is substituted in Eq. (1) that yields

¢ ¢ n—1 b
I= J'f(x)dx =~ J'P(x)dx = Zf(xj)J Lj(x)dx
b b =0 ¢

n—1
=(b-a) Y, C"f).

Jj=0
where

c™ = b L(x)dx
J b—al’ '
b

Since L(x) are independent of the dataf(xj), we conclude
that Cj”’s are independent of f(x;). Using f(x) = 1, we conclude
that

Tt
J

Note that (b — a)Cj(”) are the weights.

Now let us compute the Cj(”) for some of the Legendre polyno-

mials. For two points, the polynomial is

57

-b -
5w=§—;ﬂm+§f§w»

When we integrate the above, we obtain

T h
I=JP@Mx=EU%D+ﬂML
b

This method, called trapezoid rule, is accurate for linear func-
tions.

Note that the error in the above computation is

b rn
p=[1O

X (x—a)x —b)dx = - %fﬁf”(é)-

When we use f(x) = P;(x) using the points x=a, (a+b)/2, b, we
obtain

I= JP(X)dx = g(f(a) +4f((a + D)/2) + f(b)),
b

This method is called Simpson’s rule, and it is accurate for
polynomials up to third order.

Figure

The higher-order terms get more complex. Here we list Gi in
Table 1.

n N

2 2 1 1

3 6 1 4 1

4 8 1 3 3 1

5 90 7 32 12 32 7

6 288 19 75 50 50 75 19

7 840 41 216 27 272 27 216 41

Error analysis for Newton-Cote’s method
In an earlier chapter we derived that the error in Lagrange in-
terpolation with n points is

()
ﬂ@=ﬂ@—P@%=f(OII@—%)

n!
Hence the error in the integration by Newton-Cotes scheme is

58

(n)
E=JE()d _f (C)Jdn(—Xx)

We observe that for even n, the above integration is propor-
tional to A"*!, but it vanishes for odd n. For odd n, the error
comes from the next term of the expansion that passes through
the points (a,a+h,a+2h,...,b,b+h). The error estimate is

b (n+1) b
_ A9, L 3
E= J BQodx =7 J dx [(x b-n[] x,.)].

The above integrals yield the errors as

n Error

P (R12)r@(Q)

Ps (h5/90)f4)(C)

P4 (3h5/80)F4)(Q)

Ps (8h7/945)F6)(7)
Ps (275h7/12096)7©)(Q)
Pz (9h3/1400)f'®)(C)

We illustrate the above error estimates using trapezoid and
Simpson methods. For the trapezoid method

(S

By ==

b
J dx(x —a)(x —b).

We choose a=0 and b=1, hence h=1 that yields

Val(9
12

E2=

For n=3, the leading-order Legendre expansion yields

(9!
3!

E, = J dxx(x—-1/2)(x—1) =0.
0
Hence, for estimation, we pick the next polynomial using
points (0,1/2,1,3/2). The error is

A0S

b=

1 h5
J dxx(x — 1/2)(x — D)(x = 3/2) = — @),
o 90

where h=1/2. Since f4(x)=0 for a third-order polynomial,
Simplson’s method is accurate for polynomials up to cubic order.

We can compute the coefficients of Table 1 as well as error for-
mula using Sympy.

x,3,b,h = symbols(('x','a’,'b','h"))

n=4

h=(b-a)/(n-1)

xarray =[]

foriin range(n):

xarray.append(a+i*h)
def Newton_cotes_coeff(xarray):

n =len(xarray)
59

coeff =[]
for j in range(n):
numr=1;denr=1;
foriin range(n):
if (j 1=1):
numr *= (x-xarray[i])
denr *= (xarray[j]-xarray[i])
Cj = simplify(integrate(numr/denr, (x,a,b))/(b-a))

coeff.append(Cj)

factor=1
for iin range(n):

factor *= (x-xarray[i])

if (0% == 1):

error_factor = simplify(integrate(factor* (x-b-h), (x,a,b))/
(h* *(m+R)*factorial(n+1)))

else:

error_factor = simplify(integrate(factor, (x,a,b))/
(h**(n+1)*factorial(n)))
return coeff, error_factor

/2

Example: J dx sin x
0

Newton_cotes.py

assume a single interval
Solve int_a"b f(x)dx using m-th order Newton-Cotes method
def Newton_cotes(m, £, a, b):

h=(b-a)/(m-1)

if (m==2):
return (b-a)* (f(a)+f(b))/
elif (m==3):
return (b-a)* (f(a)+4 *f((a+b)/2)+f(b))/6
elif (m==4):
return (b-a)* (f(a)+3* (f(a+th)+f(a+2 *h))+f(b))/8
elif (m==8):
return (b-a)* (7*(f(a)+f(b)) + 3 * (f(a+h)+f(b-h)) + 12 *f(a+*h))/
90
elif (m==6):
return (b-a)*(19*(f(a)+f(b)) + 758* (f(a+h)+f(b-h)) +
50*(f(a+*h)+f(a+3*h)))/288

(b-a) divided into n-1 interval; given n points
Trapezoid rule
def Newton_cotes2(f, a, b, nn):
h = (b-a)/(n-1)
ans=0
for iin range(n):
ans +=f(a+i*h)

ans -= (f(a)+f(b))/&

return h*ans

def f(x):
return np.sin(x)

60

LZ) 10
L -
I (®)
S =
O
- D102}
)]
107
10

n

Fig: Error in Newton-Cotes method vs. degree of the polyno-
mial, n, used.

The figure shows that error drops when we go from 2 to 3, but
flattens from 3 to 4. See the error table for the reasons.

We can also integrate using smaller h, but summing over all
the interval. We perform the above using trapezoid rule. The fol-
lowing figure illustrates how the error decreases with h as h3, as h
is decreased. The green dashed line represents h®.

61

Gaussian Quadrature

In this method, we choose both x,, and w,, of
b

N-1
I = J fdx ~ 2 w,, f(x,) (1)
m=0

a

so that the integral is accurate. Thus we have 2N unknowns. If
we demand exact quadrature for f(x) = 1,x,x%, ..., x*¥1 we will
have 2N equations using which we can obtain the aforemen-
tioned 2N unknowns.

Example: Work out for N=2 for [-1,1].

Solution: We require that the integral is exact for
f(x) = 1,x, x%, x3, which yields the following four equations:

2= Wo + Wy

0 = wyxy + wix;
2 2

g = WoXy + wixg

whose solutions are wy =w, =1, and x; = —x, = 1/\/3.

Hence

The above integral is exact as long as f(x) is a polynomial of

1
degree 3 or less. We verify for f(x) = x> + 5x3, for which the RHS
of the above equation yields 2/3, which is the exact integral.

The above procedure however is quite tedious for a general
function. In the following discussion, we provide a general formu-
lation based on orthogonal polynomials. Note that our formulation
should yield an exact quadrature for any polynomial of degree
2N-1 or less. We denote this function by f(x).

Suppose that the orthogonal polynomials used in our method
is ¢,(x), and they satisfy the following orthogonality relation:

b
J w(X)P(X)p;(x) = 5;7;,

where y; are a constants, i =0 : (N — 1), and w(x) is the weight
function. Note that not all the polynomials need to be of (N-1)th
order. However, we demand that at least one of them is of (N-1)-
order. In this scheme the integral is

N—-1
I = 2 ij(xj),
j=0

where xj‘s are the roots of ¢,(x), and w;j‘s are

. anyn

Y T)

We provide the proof of the above scheme in two steps:
Step 1: We write the function f(x) as

62

fX) = gy_ 1 (OPn(x) + ry_ (%), 2 Expand ry_,(x) using Lagrange interpolation

where ¢,(x) is the N-th order polynomial, g,_, is the quotient, Fyo1(X) = Z o1 ()Li(x),

and ry_, is the remainder. Both g,_, and ry_, are polynomials of J

order (N-1), hence substitution of which in Eq. (3) yields
N-1

b b b
a1 = 2 4, J WwOOf (X)dx = J WEry_(dx = Y rN_l(xj)J WOOL,(x)dx

j=0 ,
J

where a’s are the coefficients. Integration of Eq. (2) yields

= Z wiry-1(x;) = Z w; f(x)),
J J

b b
| wercodx = | weay oo b
¢ ‘ where wj:J w(x)L;(x)d x. Using

b
+J w@)ry_(dx. (3)

H(x - X;) 1IN(E9)
H(x—xi)z X —X; :a(x—x~)’
The integral i J N J
where ay, is the coefficient of x" in ¢, (x). Using L'Hospital rule,
we take the limit x — Xy which yields

b b
J W gy_ 1y (dx =) ajJ W) (X)py(x)dx = 0 due to or-

J

thogonality property. Hence Py(x;)
b b it ay
J wx)f(x)dx = J w(x)ry_ (x)dx. N
¢ ¢ Therefore,
Step 2: The N-th order polynomial has N roots. We
p . p Yy ¢N(x) . b Hi,i#j (x — xi) 1 b W(X)¢N(X)
choose these roots, x,(j = 0 : N), as the abscissa, hence w,= [dxw(x) = dx. (4)
K . . S I . G—x) oy, x-x
¢n(x;) = 0. The function f(x) given at these x/s , i.e., y; = f(x;). Us- L]
ing Eq. (2) Using Christoffel Darboux identity we can simpilify it further to
f(xj) = qN—l(xj)¢N(xj) + rN_1(xj) = ’"N_l(xj)- A Di(X)PAy) _ Dn1 (PN (V) — DNy (Y) (5)
=0 Vi ayyn(x =)

63

b
where J w(X)P(X)P;(x) = 5, and

A

_ m+l
W

m

with A,, as the coefficient of x™ in ¢,,(x). Choosingy = x;, a
zero of ¢,(x), substitution of which in Eq. (5) yields

Al ¢i(x)¢i(xj) _ ¢N(X)¢N+1(Xj)

o Vi ayyyx —x)

b
Integration of the above wrt J dxw(x)¢o(x) ... and using the

fact that ¢,(x) = const yields

) b
oty = =P g [0 2O
aNyYn a (x — -xj)
Hence
r L OV avny
X = — .
a (x —x) Pns1(x))
Hence
1/ S ©)

T) By ()

We state without proof that the error in Gaussian quadrature is

I A(9)
int — (2]1)'

b
J w(x)W(x)d x (7)

[NOT] Alternate proof:

We can also use Hermite’s interpolation to derive the formula
for Gaussian quadrature:

f) ~ P = Y U@y, +), Vi) (1)
J J

with
Uix) = [1 = 2L —)] [L(0)]1%
Vi(x) = (x - xj)[Lj(X)]2

The integral is

b b
J w(x)f (x)dx zJ w(Xx)P(x)dx

b b
= Y| woovdr + X[wemeodx
J a j a

We choose the abscissa in such a way that the second inte-
gral is zero, i.e.,

b b
J w(x)Vi(x)dx = J w(x)(x — x)[Li(x)]*dx = 0.
Therefore,

b b
J wEPWdx =) ij WU (x)dx

J

64

b
_ Zyij wILOPdx = 3 v,
a J

J

Thus the weight is

b
w; = J w(x)[Lj(x)]*dx

Compare it with the other formulas derived in the previous
derivation.

Error:
We derived in the Hermite’s polynomial that the error is

)
2n)!

E=f(x)-Px) = W(x),

where

n—1
W) =[] e - x?

i=0

Hence the error in the quadrature would be

) [
int = o) L w@)Wx)dx

For integration of smooth functions within a limit, it is best to

use Legendre polynomials, for whichw(x) =1,a = -1, and
b = 1. We will show later how the integration scheme can be gen-
eralized to arbitrary a and b.

The leading Legendre polynomials are

¢0(x) =1
P(x) =x

3x2 -1
¢2(x) =)

5x3 = 3x
¢3(X) = >

PLOTS OF LEGENDRE POL

1.0

05|

0.0}

-10 s s s
-1.0 ~05 0.0 05 1.0

65

Also,
2
S 2j+1

e 2
TT2in N TN+

7j

Hence, using Eq. (6) we obtain
2
WJ = - - ;
(J + Doy by (x))

Using an identity
(1 =xD)j() = (j + Dxgy(x) = (j + Dy (1)
and substituting j = N, x = x; we obtain

2
T TSP

21

3
N=2: hy(x) = -, 5(x) = 3x

The zeros of the polynomials at x = — 1/4/3,1/4/3. Also,
Py £ (11/3)) = £4/3. Therefore, wy = w, = 1.

5x3 = 3x

N:3’ ¢2()C) = 5

The zeros of the polynomials at x = —4/3/5,0,4/3/5, substitu-
tion of which yields:
Wy = w, = 5/9,w; = 8/9.

We list the abscissa and weights in the following table:

n Xi Wi
2 +0.5773503 1
3 0 0.888889
+0.774579 0.555556
4 +0.339981 0.652145
+0.861136 0.347855
5 0 0.568889
+0.538469 0.478629
+0.90618 0.236927

Example code
gaussian_quad.py

sum(w_i f(x_i))

def my_gauss_quadrature(warray, xarray,):

yarray = np.zeros(len(xarray))
for iin range(len(xarray)):
yarray[i] = f(xarray[i])

return sum(warray *yarray)

66

xarray = np.array([-1/np.sqrt(3),1/np.sqrt(3)])

warray =np.array([1,1])

1
Example 1: J x2dx = 0.6666667, exact value with n = 2.
-1

1
Example 2: J exp(x)dx for n =234
-1

The integral converges quickly with N. In the following Table,
we list the errors for N=2,3,4, and the builtin function. The error is
plotted in Figure that shows that the error varies as

E, = exp(—0.318N% — 3.16N +2.7)

Thus the convergence is exponential (for small N).

n | error

2 2342 0.00770

3 2.35033 6.55E-05

4 23504021 2 87E-07
EZTSZ)SBZS 2.3504023872 8.23E-10

For a variable x’ in an arbitrary interval [a,b], we make a
change of variable x' = ax + f, with (x' = - 1,x = a) and
x'=1,x=>b).. Hencea =—-a+f,and b = a + p, leading to
a=({b-a)2, p=(0b+a)l2. Hence,

b 1
I:J f(x’)dx’zzb—zaj flax + p)dx.
a -1

67

Laguerre-Gauss quadrature
We often encounter integral of the form

ro e f(x)dx,

0

w(x) = exp(—x) is the weight function. One of the example is
Hydrogen atom. Note that the integration of the above function
with Newton-Cote’s scheme will be very expensive because we
have to take many intervals to reach x = co.

we use Laguerre polynomials whose orthogonality relation is

J e'L,(0L,(x)dx =6, ,
0

) N—-1
Jeﬁmm=2%mﬂ

0 j=0

where x; are the roots of Ly(x). Also,

=1
—1)/ 1
AJ=(-) y Ay = ——
J! N
Hence

1 1
Y T N DA () N ()di(x)

Using identities we obtain

1 X;

(N + DLy ()]

YT MR

[REF: mathworld.wolfram.com]

Laguerre-Gauss quadrature

n x Wy

2 0.585786 0.853553
3.41421 0.146447

3 0415775 0.711093
229428 0.278518
6.28995 0.0103893

4 0.322548 0.603154
1.74576 0.357419
4.53662 0.0388879
9.39507 0.000539295

5 0.26356 0.521756
1.4134 0.398667
3.59643 0.0759424
7.08581 0.00361176
12.6408 0.00002337

Hermit-Gauss quadrature

We also encounter integral of the form

68

J e f@dx = Y wf(x).
. -

Here w(x) = exp(—x?) is the weight function. For such integrals
we employ Hermite’s polynomials. Here x; are the roots of Hy(x),
and wi’s are given below. Recall the wavefunction of the harmonic
oscillator.

Hermite-Gauss quadrature

Xi Wi
+0.707107 0.886227
0 1.18164
+1.22474 0.295409
+0.524648 0.804914
+1.65068 0.0813128
0 0.945309
+0.958572 0.393619
+2.02018 0.0199532

69

