-Section1 . . B

o

interpolation

In experiments and simulations, we record values of a function at
finite number of points. Normally we need values of the func-
tions at some other points. This is achieved by interpolation.

Also, interpolation is mother of many numerical algorithms: inte-
gration, differentiation, ODE solver, etc. This observation will be-
come evident when we discuss these schemes in future.

Lagrange Interpolation
First we discuss linear interpolation. Consider a function f(x) and

two points on it: (xo,yo0) and (x1,y1) as shown in Fig. 1. Note that
f(xo) = yo and f(x1) = y1.

Figure 1: Linear interpolation

Clearly, the interpolating function passing through the two
points is

X =X X =X
fx) = Yo+ Vi
Xo — X1 X1 —Xo
Lo L1

The first term is called Lo, while the second term Li. Note

Now imagine n points: (xy,), (X, ¥), ..., x,_1.¥,—p)- A func-
tion going through these points is

P(x) =) L)y, (1)
J
where
Lo =] (=) @)
! iiskj (Xj - X;)

Note that L;(x;) =

The interpolation function is a nth order polynomial.
1

Example: Imagine f(x) = —. Using the data points x = (3,4),
X

(3,4,9), (2,3,4), and (2,3,4,5), estimate f(3.5).

48

Solution: We employ formula (1) to construct the polynomials
that pass through the points. The polynomials are plotted in Fig. 2
along with f(x)=1/x. We also compute f(3.5) using all the polynomi-
als and list them in Table 1 along with the error = 1/3.5- P(3.5).

e—e |agrange:34
v v lagrange:234 ||
N . » -+ Lagrange:345

“x N\ ¢ Lagrange:2345
om.\ N grang]

— 1/z

14

5.0

Fig. 2
Table 1
Points P(x) Error=1/x-P(x)
(3,4) 0.291667 -0.005952
(2,3,4) 0.28125 0.004464
(3,4,5) 0.2875 -0.001786
(2,3,4,5) 0.284375 0.001339

We also compute the interpolated values linearly-spaced
points x = [2.00,2.25....,4.75] for polynomials constructed using
points (3,4), (2,3,4), (3,4,5), (2,3,4,5). These values are shown in
Fig. 2.

It is important to estimate errors in numerical schemes. In the
following discussion we estimate error for Lagrange interpolation.
The proof invokes Rolle’s theorem, which is stated first. We also
state how the error in Taylor’s theorem estimated because the er-
ror estimation of Lagrange interpolation follows similar lines of ar-
guments.

Rolle’s theorem:Consider a function f(x) and two points x=a,b
at which the function takes values f(a) and f(b) respectively. Then,
according to the mean value theorem, 3¢ € (a, b) such that

b) —
o O =1@
b—a

Taylor’s Theorem

If f(x) is differentiable (n + 1) times in [a,b]. Let x, € [a,b],
then for every x € [a, b], 3{(x) between xo and x such that

J&) = P,(x) + R, (x)

P, (x, xp) = f(xg) +f'(x)(x — x¢) + ! 2():0) (x—x0)*+...
fn_l(xo) n—1
+(n_1)!(x—x0) 3)
1
R,(x) = gf (C))(x = xp)")

Proof:

Consider a function

g0 =[f(x) = P,(x,0)] - (= > [f(x) = P,(x, xp)]

X —Xp

49

where Ph(x,t) is the expansion given by Eq. (1), but around t.
Let us visualize the points on the line:

Figure 3

Note that Pn(x,x)=f(x). Therefore, g(x)= g(x0)=0. Applying
Rolle’s theorem, we deduce that 3 such that g'({) = 0. There-
fore,

(=t

0= P(x,0)] +n L0 = Py

(x — xg

By taking derivative of Eq. (1) wrt x, , we obtain

J'&)

_ ~\n—1
e 1)!(x o

d
[Epn(x7 t)]t:&: =
we obtain
1
R, (x) = f(x) — P,(x, o) = ;f M(E))(x — xp)",
which is same as Eq. (4). This is how error is estimated in Tay-

lor’s theorem.

Example: Estimate ¢! as an expansion around x = x, = 0. Us-
ing Eq. (4) we obtain

2
X 1 .
Py(1)=e"=1 =1 txt o= 1 +1+5, and the error is

L, ;1
Ry(x =1)= ;f (N = 3 exp({),

Since ¢ € [0,1], the error is bounded by 1/6 < R < e/6, or
0.166667 < R < 0.453047. Therefore 2.666667 < e <2.953047.
Note that the the approximate value of e = 2.718281828 lies
within the aforementioned error band.

For x = — 1, the actual value is 1/e = 0.3678794412, and the
estimate P3(x) = 1/2. The bound on the error is (-1/(6€),-1/6) =
(-0.061313, -0.166667), and the bound on e is (0.333333,
0.438687).

Errors in Lagrange Interpolation:

The proof is in the similar lines as that for Taylor’s theorem.
First we define
(t—x)
(x — xi),

g() =f(t) - P() - [f) - P [|

where x; are the given data points, and P(t) is the extrapolating
n-th order polynomial. It is easy to see that g(r = x;) =0 and
g(t =x) =0. Hence g(t)=0 at n+1 points. Therefore, according to
Rolle’s theorem, g’(t)=0 at n points. Continuing this argument, we
conclude that g@(t)=0 at n-1 points, ..., and g")(t)=0 at one point.
We denote this point by ¢. Setting g"(¢) = 0, we obtain

n!

H(x - X;) B

Since P,(x) is a (n-1)th order polynomial, P™({) = 0. Hence
the error

FOE) = P = [f0) = PO)] 0.

(n)
E=f0-Pw =1"L[w-x. ®

n

For the example f(x) = 1/x, the error is

50

E = ‘é‘—(nﬂ)H(x — X)) ‘ _

Therefore, for the interval [3,4], the maximum value of the error
occurs for { =3, and the minimum for { =4. These values are
listed in the following Table 2.

Table 2
Points P(x) Error max-error | min-error
(3,4) 0.291667 -0.005952 0.03125 0.002
(2,3,4) 0.28125 0.004464 0.023438 0.001465
(3,4,5) 0.2875 -0.001786 0.00463 0.0006
(2,3,4,5) 0.284375 0.001339 0.017578 0.00018

We work out the interpolated values at the linearly-spaced 12
points x =[2.0,2.25,...,4.75] for the Lagrange polynomials dis-
cussed earlier. We computer the errors for the interpolated values
by computing its difference with the real value 1/x. The error for
the four cases are exhibited using blue, red, green, and yellow
curves in Fig. 4. The interpolation with 4 points yields the best in-
terpolation.

The errors for the end points are more than the intermediate
points due to the product term. The above formula indicates that
the data points should be chosen carefully.

0.04

0.00p= T TS e

0L 0B
e—e |agrange:34

v v Lagrange:234
| » -+ Lagrange:345 |]
¢—¢ Lagrange:2345

I
2.0 2.5 3.0 3.5 4.0 4.5 5.0

Figure 4

We compute the interpolated values using python functions
interp1d and spline. Interestingly they are as accurate as the La-
grange’s polynomial computed using (2,3,4,5). This is because
spline is cubic order function, and the Lagrange interpolation us-
ing 4 points yields cubic order polynomial.

Lagrange Interpolation in 2D
Assume Cartesian 2D mesh with points as (xi,yi). We want to

compute f(x,y) using interpolation.

51

- 2

Fig. 5: 2D Mesh (x,y)

We estimate f(x,y) using x; interpolation first.

P(x,y) =) H

i 0

oo f(X;,)

Now we proceed to estimate f(x;,y) as

(
raen=2T1 ¢ - y’ Gy

J JJ#J

substitution of which in P(x,y) yields

P(x,y) =) H

i lz;éz

(x,, y)

=)
I | Fmeed | Fomes tLOR
(x; — x;) —)’j')

()’j

i # JJ#

Hence

P@.y)= Y D L (., (©6)

i

where

—HH (x —x;) (y—)’,))(7)

”;ez]”ej x)(yJ

It can be easily generalized to higher dimensions.

Lagrangian interpolation is useful when the number of points is
small. The computational complexity increases for larger number
of points. Also, higher-order polynomials tend to exhibit
oscillations, which may be spurious (not related to real f(x)). For
such cases, we employ piece-wise interpolation. However, we
need to make sure that the functions are smooth at the
intersections. This is achieved by spline, which is topic of the
next subsection.

Spline
Here we discuss cubic spline, which is the solution of the
beam equation:

d4
El ﬁf(x) = F(x), (1)

where E is the Young’s modulus of the material, / is the mo-
ment of inertia of a cross section, and F is the applied force. In

52

the spline scheme, the force is assumed to be active at points x;
(called nodes) with i=0:(n-1), i.e.,

d4
El ﬁf(x) = Fi6(x — x;)

Hence, f"(x) would be discontinuous at the nodes.

i-1 i i+
Fig 6
We Demand: Fig. 7
1. The curve is piecewise linear in each interval. Suppose we are given f”(x,) at each point, then using La-

2. The curve passes through each of the given points (x;, y,). grange’s linear interpolation formula, we obtain

X —X;

3. The first and second derivatives are continuous at each of 1) =f"(x) f“_x. +f "(X,-+1)x. —
the given points e A
whose integration yields fi(x) in the interval (xi:xi-1) as

(x —x)°
6h;

An example of the function is shown in Fig. 7.

f0) = f(x)L + (X) ———

l L

yi ho,
+ E—gf () | (Kiyp — %)

—yil h; "
+ Tt—g (xi+1)] (x —xp),

53

The constants of integration are deter-
In the pre-

mined using the conditions: f(x,) = y;, and fi(x;, ;) = yiy;-
vious interval (x;_, : x;), the function is

" (-)3 ” (x X —X;_ 1)3
Sfioi) =f"(x;_p) 6h:_, + () ————— 6h._,
+ z—l— L, o] (x; = x)

o2 P o o x .
hii 6
We impose an additional condition that the first derivative at
the nodes is continuous at both sides. Applying this condition to
the node at x = x;, i.e., fi(x;) = f/_,(x;), we obtain

LTSl LYo I B VR
i) hl hl Ait1
i i B,
== [hi—l o f(xi—l)]
Vi hiy ,
+ [H —Tf (xi)],
which yields

hi—] /1 1 % hi 1/
Tf (xi—1)+§(hi+hi—1) (xi)+€f (Xi41)

; 1 1 i
SRR R (R) P)
h; hi hiy hi_y

We obtain (n-2) equations for nodes i=1:(n-2). However we
have n unknowns f”(x;). To solve this problem, we use one of the
following boundary conditions:

1. Periodic Spline: We assume that the data is periodic with
Y, identified with y,_,, or y, =y,_,. Hence, we have (n-1) points,
and (n-1) matching conditions in Eq. (8). These conditions are suf-
fice to determine all the (n-1) f"(x;).

2. Parabolic Run-out: We assume that f” are constant on
both end intervals, hence f is quadratic here. Therefore,

J'(xo) = f"(xp) and f(x,_y) = f"(x,5)

3. Free End: We assume that =0 at both the ends, or
S'(xp) =f"(x,-) =0

4. Cantilever End: A intermediate condition between the
cases 2 and 3, i.e.,

J'(xo) = Af"(xp) and f"(x,_1) = 4f"(x,),
with0 <1 < 1.

We work out the spline interpolation for the example dis-
cussed earlier with four points (2,3,4,5). Let us use the Free End

boundary condition for this example. Note that #; = 1. Therefore
fo=f{=0,and

2”+1,,_ S _l 2+1

31 62—)’2 Y1)’0—4 375

54

1”+2f”— oy + 1 2+1
61 T3 2= Y3 Yo T Y1 = 5 1773

Using the solution f7,, we construct fi(x) discussed earlier.
The combine plot of f(x) is shown below. The actual curve 1/x is
shown as the green curve. The spline interpolated function fits

well with 1/x.

0.50

e—e spline
o 1/z

0.451

0.401

E 0.35
—

0.301

I i I I I
2.0 2.5 3.0 3.5 4.0 4.5 5.0

For more points, we need to solve the matrix equation. Fortu-
nately, the matrix is tridiagonal. We will discuss how to solve
such matrices in later chapters.

Python functions for interpolation

Python offers interpolation functions interp1d and spline func-
tion splrev, whose usage is show below. These functions are part
of scipy module.

Using Python function interpolate.interp1d

xarray = np.array([2,3,4,5])
yarray = np.array([1/2.0,1/3.0,1/4.0,1/5.0])

python defined function
interpolate 1d
interpld yields a function yp.

from scipy import interpolate

x =np.arange(8,5,0.25)
yp = interpolate.interpld(xarray,yarray)

yinterpld =[]

for x_pin x:
yinterpld.append(yp(x_p))

yinterpld =np.array(yinterpld)

Using Python function interpolate.splrep

Using spline, output in tck

Using tck, splev

tck = interpolate.splrep(xarray,yarray)

yspline =[]

for x_pin x:
yspline.append(interpolate.splev(x_p,tck))

yspline =np.array(yspline)

print("Using spline: ", interpolate.splev(3.5,tck))

55

Error

H Lagrahge:2345
e—e interpld
0.45F - | *—+ spline 1
~—* 1/x
0.40} i
QO.BSf]
—
0,25 N .
020 | | | | |
2.0 2.5 3.0 3.5 4.0 4.5 5.0
0.020 1 ‘
¢—¢ Lagrange:2345
e—e nterpld
0.015 o—o spllne‘ |
0.0T0 e
0.005L /i o\ .
0.000 e i
—0.005 I I \ I I
2.0 2.5 3.0 3.5 4.0 4.5 5.0

56

