
 
In experiments and simulations, we record values of a function at 
finite number of points.  Normally we need values of the func-
tions at some other points.  This is achieved by interpolation.

Also, interpolation is mother of many numerical algorithms: inte-
gration, differentiation, ODE solver, etc.  This observation will be-
come evident when we discuss these schemes in future.

Lagrange Interpolation
First we discuss linear interpolation.  Consider a function f(x) and 
two points on it: (x0,y0) and (x1,y1) as shown in Fig. 1.  Note that 
f(x0) = y0 and f(x1) = y1.

Figure 1: Linear interpolation

Clearly, the interpolating function passing through the two 
points is

f (x) = x − x1
x0 − x1

y0 + x − x0
x1 − x0

y1

	 	    L0	 	   L1

The first term is called L0, while the second term L1.  Note 
L0(x0) = 1 L0(x1) = 0 L1(x1) = 1 L1(x0) = 0

Now imagine n points: (x0, y0), (x1, y1), . . . , (xn−1, yn−1).  A func-
tion going through these points is

	 	 P(x) = ∑
j

Lj(x)yj  	 	 	 (1)

where

	 	 Lj(x) = ∏
i,i≠j

(x − xi)
(xj − xi)

	 	 	 (2)

Note that Lj(xk) = δjk 

The interpolation function is a nth order polynomial.

Example:  Imagine f (x) = 1
x

.  Using the  data points x = (3,4), 

(3,4,5), (2,3,4), and (2,3,4,5), estimate f(3.5).

Section 1

Interpolation
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Solution: We employ formula (1) to construct the polynomials 
that pass through the points. The polynomials are plotted in Fig. 2 
along with f(x)=1/x.  We also compute f(3.5) using all the polynomi-
als and list them in Table 1 along with the error = 1/3.5- P(3.5).

Fig. 2

Table 1

Points P(x) Error=1/x-P(x)

(3,4) 0.291667 -0.005952

(2,3,4) 0.28125 0.004464

(3,4,5) 0.2875 -0.001786

(2,3,4,5) 0.284375 0.001339

We also compute the interpolated values linearly-spaced 
points x = [2.00,2.25,...,4.75] for polynomials constructed using 
points (3,4), (2,3,4), (3,4,5), (2,3,4,5).  These values are shown in 
Fig. 2.

It is important to estimate errors in numerical schemes.  In the 
following discussion we estimate error for Lagrange interpolation. 
The proof invokes Rolle’s theorem, which is stated first.  We also 
state how the error in Taylor’s theorem estimated because the er-
ror estimation of Lagrange interpolation follows similar lines of ar-
guments.

Rolle’s theorem:Consider a function f(x) and two points x=a,b 
at which the function takes values f(a) and f(b) respectively. Then, 
according to the mean value theorem, ∃c ∈ (a, b) such that

f′�(c) = f (b) − f (a)
b − a

Taylor’s Theorem

If f (x) is differentiable (n + 1) times in [a, b].   Let x0 ∈ [a, b], 
then for every x ∈ [a, b], ∃ζ(x) between x0  and x such that

f (x) = Pn(x) + Rn(x)

Pn(x, x0) = f (x0) + f ′�(x0)(x − x0) + f ′�′�(x0)
2! (x − x0)2 + . . .

	 	 	 + f n−1(x0)
(n − 1)! (x − x0)n−1	 	 (3)

Rn(x) = 1
n! f n(ζ(x))(x − x0)n   	 	 	 (4)

Proof: 

Consider a function	 	 	 	 	  

g(t) = [ f (x) − Pn(x, t)] − ( x − t
x − x0 )

n

[ f (x) − Pn(x, x0)]
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where Pn(x,t) is the expansion given by Eq. (1), but around t.  
Let us visualize the points on the line:

	 	 	 	

	 	 	 	 x0	 t 	 	 	 x

Figure 3	

Note that Pn(x,x)=f(x). Therefore, g(x)= g(x0)=0.  Applying 
Rolle’s theorem, we deduce that ∃ζ such that g′�(ζ ) = 0.  There-

fore, 

0 = − P′�n(x, ζ )] + n
(x − ζ )n−1

(x − x0)n [ f (x) − Pn(x, x0)]

By taking derivative of Eq. (1) wrt x0 , we obtain 

[ d
dt

Pn(x, t)]t=ζ = f n(ζ )
(n − 1)! (x − ζ )n−1,

we obtain

Rn(x) = f (x) − Pn(x, x0) = 1
n! f n(ζ(x))(x − x0)n,

which is same as Eq. (4).  This is how error is estimated in Tay-
lor’s theorem. 

Example: Estimate e1 as an expansion around x = x0 = 0.  Us-
ing Eq. (4) we obtain 

P3(1) = ex=1 = 1 + x + x2

2! = 1 + 1 + 1
2 , and the error is

R3(x = 1) = 1
3! f 3(ζ(x))x3 = 1

6 exp(ζ ), 

Since ζ ∈ [0,1], the error is bounded by 1/6 < R < e/6, or 
0.166667 < R < 0.453047.  Therefore 2.666667 < e <2.953047.  
Note that the the approximate value of e =   2.718281828 lies 
within the aforementioned error band.

For x = − 1, the actual value is 1/e = 0.3678794412, and the 
estimate P3(x) = 1/2.  The bound on the error is (-1/(6e),-1/6) = 
(-0.061313, -0.166667), and the bound on e is (0.333333, 
0.438687).

Errors in Lagrange Interpolation:

The proof is in the similar lines as that for Taylor’s theorem.  
First we define   

 g(t) = f (t) − P(t) − [f (x) − P(x)]∏
i

(t − xi)
(x − xi)

, 

where xi are the given data points, and P(t) is the extrapolating 
n-th order polynomial.  It is easy to see that g(t = xi) = 0 and 
g(t = x) = 0.  Hence g(t)=0 at n+1 points.  Therefore, according to 
Rolle’s theorem, g’(t)=0 at n points.  Continuing this argument, we 
conclude that g(2)(t)=0 at n-1 points, ..., and g(n)(t)=0 at one point.  
We denote this point by ζ .  Setting g(n)(ζ ) = 0, we obtain

f (n)(ζ ) − P(n)(ζ ) − [f (x) − P(x)] n!
∏ (x − xi)

= 0. 

Since Pn(x) is a (n-1)th order polynomial,  P(n)(ζ ) = 0. Hence 
the error 

E = f (x) − P(x) = f (n)(ζ )
n! ∏ (x − xi).    (5)                      

For the example f (x) = 1/x, the error is
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E = ζ−(n+1)∏ (x − xi) .

Therefore, for the interval [3,4], the maximum value of the error 
occurs for ζ = 3, and the minimum for ζ = 4. These values are 
listed in the following Table 2.

	 Table 2

Points P(x) Error max-error min-error

(3,4) 0.291667 -0.005952 0.03125 0.002

(2,3,4) 0.28125 0.004464 0.023438 0.001465

(3,4,5) 0.2875 -0.001786 0.00463 0.0006

(2,3,4,5) 0.284375 0.001339 0.017578 0.00018

We work out the interpolated values at the linearly-spaced 12 
points x = [2.0,2.25,...,4.75] for the Lagrange polynomials dis-
cussed earlier. We computer the errors for the interpolated values 
by computing its difference with the real value 1/x.  The error for 
the four cases are exhibited using blue, red, green, and yellow 
curves in Fig. 4.  The interpolation with 4 points yields the best in-
terpolation.

The errors for the end points are more than the intermediate 
points due to the product term.  The above formula indicates that 
the data points should be chosen carefully.  

Figure 4

We compute the interpolated values using python functions 
interp1d and spline. Interestingly they are as accurate as the La-
grange’s polynomial computed using (2,3,4,5). This is because 
spline is cubic order function, and the Lagrange interpolation us-
ing 4 points yields cubic order polynomial.

Lagrange Interpolation in 2D
Assume Cartesian 2D mesh with points as (xi,yi).  We want to 
compute f(x,y) using interpolation.
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Fig. 5: 2D Mesh (x,y)

We estimate f(x,y) using xi interpolation first.

	 P(x, y) = ∑
i

∏
i′�,i′�≠i

(x − xi′ �)
(xi − xi′ �)

f (xi, y)

Now we proceed to estimate f(xi,y) as

	 f (xi, y) = ∑
j

∏
j′�, j′�≠j

(y − yj′ �)
(yj − yj′�)

f (xi, yj),

substitution of which in P(x,y) yields

P(x, y) = ∑
i

∏
i′�,i′�≠i

(x − xi′ �)
(xi − xi′ �)

f (xi, y) 

	 = ∑
i

∑
j

∏
i′�,i′�≠i

(x − xi′ �)
(xi − xi′ �) ∏

j′ �, j′�≠j

(y − yj′�)
(yj − yj′ �)

f (xi, yj)

Hence

	 P(x, y) = ∑
i

∑
j

Li, j(x, y)yi, j, (6)

where

	 Li, j = ∏
i′�,i′�≠i

∏
j′�, j′�≠j

(x − xi′ �)
(xi − xi′ �)

(y − yj′�)
(yj − yj′�)

 (7)

It can be easily generalized to higher dimensions.

Lagrangian interpolation is useful when the number of points is 
small.  The computational complexity increases  for larger number 
of points.   Also, higher-order polynomials tend to exhibit 
oscillations, which may be spurious (not related to real f(x)).  For 
such cases, we employ piece-wise interpolation.  However, we 
need to make sure that the functions are smooth at the 
intersections.  This is achieved by spline, which is topic of the 
next subsection.

Spline
Here we discuss cubic spline, which is the solution of the 

beam equation:

EI
d4

d x4 f (x) = F(x), 	 (1)

where E is the Young’s modulus of the material, I is the mo-
ment of inertia of a cross section, and F is the applied force. In 
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the spline scheme, the force is assumed to be active at points xi 
(called nodes) with i=0:(n-1), i.e.,

	 EI
d4

d x4 f (x) = Fiδ(x − xi)

Hence, f′�′�′�(x) would be discontinuous at the nodes.

	 	 i -1      i      i+1	

Fig 6

We Demand:

1. The curve is piecewise linear in each interval.

2. The curve passes through each of the given points (xi, yi).

3. The first and second derivatives are continuous at each of 
the given points

An example of the function is shown in Fig. 7.

Fig. 7

Suppose we are given f′�′�(xi) at each point, then using La-
grange’s linear interpolation formula, we obtain

f′�′�i (x) = f′�′�(xi)
xi+1 − x
xi+1 − xi

+ f′�′�(xi+1)
x − xi

xi+1 − xi

whose integration yields fi(x) in the interval (xi:xi-1) as

fi(x) = f′�′�(xi)
(xi+1 − x)3

6hi
+ f′�′�(xi+1)

(x − xi)3

6hi

	 	 +[ yi

hi
− hi

6 f′�′�(xi)](xi+1 − x)

	 	 +[ yi+1
hi

− hi

6 f′�′�(xi+1)](x − xi),
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where hi = xi+1 − xi.  The constants of integration are deter-
mined using the conditions: fi(xi) = yi, and fi(xi+1) = yi+1.  In the pre-
vious interval (xi−1 : xi), the function is

fi−1(x) = f′�′�(xi−1)
(xi − x)3

6hi−1
+ f′�′�(xi)

(x − xi−1)3

6hi−1

	 	 +[ yi−1
hi−1

− hi−1
6 f′�′�(xi−1)](xi − x)

	 	 +[ yi

hi+1
− hi−1

6 f′�′�(xi)](x − xi−1).

We impose an additional condition that the first derivative at 
the nodes is continuous at both sides.  Applying this condition to 
the node at x = xi, i.e., f′�i(xi) = f′�i−1(xi), we obtain

−f′�′�(xi)
hi

2 − [ yi

hi
− hi

6 f′�′�(xi)] + [ yi+1
hi

− hi

6 f′�′�(xi+1)]
	 	 = − f′�′�(xi)

hi−1
2 − [ yi−1

hi−1
− hi−1

6 f′�′�(xi−1)]
	 	 	 +[ yi

hi−1
− hi−1

6 f′�′ �(xi)],

which yields

	 hi−1
6 f′�′�(xi−1) + 1

3 (hi + hi−1)f′�′�(xi) + hi

6 f′�′�(xi+1)

	 	 =
yi+1
hi

− yi ( 1
hi

+ 1
hi−1 ) + yi−1

hi−1
.	 (8)

We obtain (n-2) equations for nodes i=1:(n-2). However we 
have n unknowns f’’(xi).  To solve this problem, we use one of the 
following boundary conditions:

1. Periodic Spline: We assume that the data is periodic  with 
y0 identified with yn−1, or y0 = yn−1. Hence, we have (n-1) points, 
and (n-1) matching conditions in Eq. (8).  These conditions are suf-
fice to determine all the (n-1)  f′�′�(xi).

2. Parabolic Run-out: We assume that f’’ are constant on 
both end intervals, hence f is quadratic here. Therefore,

 f′�′�(x0) = f′�′�(x1) and f′�′�(xn−1) = f′�′�(xn−2)

3. Free End: We assume that f’’=0 at both the ends, or 
f′�′�(x0) = f′�′�(xn−1) = 0.

4. Cantilever End: A intermediate condition between the 
cases 2 and 3, i.e.,

f′�′�(x0) = λ f′�′�(x1) and f′�′�(xn−1) = λ f′�′�(xn−2), 

with 0 ≤ λ ≤ 1.

We work out the spline interpolation for the example dis-
cussed earlier with four points (2,3,4,5). Let us use the Free End 
boundary condition for this example. Note that hi = 1.  Therefore 
f′�′�0 = f′�′�3 = 0, and

2
3 f′�′�1 + 1

6 f′�′�2 = y2 − 2y1 + y0 = 1
4 − 2

3 + 1
2
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1
6 f′�′�1 + 2

3 f′�′�2 = y3 − 2y2 + y1 = 1
5 − 2

4 + 1
3

Using the solution f′�′�1,2, we construct fi(x) discussed earlier.  
The combine plot of fi(x) is shown below.  The actual curve 1/x is 
shown as the green curve.  The spline interpolated function fits 
well with 1/x.

 
For more points, we need to solve the matrix equation. Fortu-
nately, the matrix is tridiagonal.  We will discuss how to solve 
such matrices in later chapters.

Python functions for interpolation
Python offers interpolation functions interp1d and spline func-

tion splrev, whose usage is show below.  These functions are part 
of scipy module.

Using Python function interpolate.interp1d

xarray = np.array([2,3,4,5])
yarray = np.array([1/2.0,1/3.0,1/4.0,1/5.0])

# python defined function
# interpolate 1d
# interp1d yields a function yp.

from scipy import interpolate

x = np.arange(2,5,0.25)
yp = interpolate.interp1d(xarray,yarray)

yinterp1d = []
for x_p in x:
	 yinterp1d.append(yp(x_p))
yinterp1d  = np.array(yinterp1d)

Using Python function interpolate.splrep

# Using spline, output in tck
# Using tck, splev
tck = interpolate.splrep(xarray,yarray)

yspline = []
for x_p in x:
	 yspline.append(interpolate.splev(x_p,tck))
yspline  = np.array(yspline)

print("Using spline: ", interpolate.splev(3.5,tck))
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