
Chapter 5

ODE solvers

We often encounter ordinary differential equations 
(ODE) in physics.  For example, Newton’s equation 
is a second-order DE in time.  In this chapter we will 
detail the important numerical methods to solve 
ODEs.  



In most of our discussion we focus on first-order DEs since 
DEs of any any order can be reduced to a set of 1st order DEs.  
For example, ··x = F(x, t) is equivalent to a set of two first-order 
DEs:

·x = v; ·v = F(x, t).

In the following discussion we will describe how to solve 1st-
order DEs.

ODE Solver 
d x
dt

= ·x = f (x, t)	 	 (1)

whose solution is

x(n+1) − x(n) = ∫
tn+1

tn

f (x, t)dt

where  x(n+1), x(n) are shorthand for x(tn+1) and x(tn) respec-
tively.  We obtain the solution by performing integration, which 
are

∫
t(n+1)

t(n)
f (x, t)dt ≈ h f (x(n), t(n))    (2)   called Forward difference

	 	     ≈ h f (x(n+1), t(n+1))  	 (3) Backward diference

	 	     ≈ h f (x(n+1/2), t(n+1/2))  (4) Midpoint rule.

	 	     ≈
1
2

h [f (x(n), t(n)) + f (x(n+1), t(n+1))]  (5) Trapezoid rule   

When we use three points, we obtain

x(n+1) − x(n−1) ≈
1
3

h [f (x(n−1), t(n−1)) + 4f (x(n), t(n)) + f (x(n+1), t(n+1))]	
	                   	 	 	 	 	 	 	 	 (6)	 	
	 	

which is called the Simpson rule.  Note that the solution 
x(tn+1) here depends on x(tn) and x(tn-1), hence it is called a multi-
step method. 

Also note that  the Forward difference scheme is explicit, and 
rest all are implicit or semi-implicit.

In the following figure we illustrate Euler’s forward and back-
ward schemes, as well as central-difference scheme.   Clearly, 
the central difference scheme is more accurate.

Two major issues in the solution of DEs are accuracy and sta-
bility.  We will discuss accuracy first.

Section 1

Explicit schemes
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Accuracy
 How much is the error in a given scheme.  Firstly we consider 

the forward difference scheme, which is also called Euler’s 
Scheme

x(n+1) = x(n) + h f (x(n), t(n))

According to the Taylor’s series. the solution of Eq. (1) is

	 x(n+1) = x(n) + h ·x +
h2

2
··x + . . .

	 	 = x(n) + h f (x(n), tn) +
h2

2
d f
dt

+ . . .

with   d f
dt

=
∂f
∂t

+ ·x
∂f
∂x

Clearly Euler’s method has 

Error per step  =  1
2

h2··x(x(n), t(n))  

Error in n steps if the errors are additive = 1
2

nh ··x(x(n), t(n)),

which is possible if df/dt has the same sign at all the steps.

since nh = tfinal, hence the error is proportional to t, which is 
not good for accuracy.

Example: Consider a DE ·x = αx  whose exact solution is 
x(t) = x(0)eαt.

In one step, the exact solution yields

	 x(n+1) = x(n) exp(αh)

However Euler’s scheme yields

	 x(n+1) = x(n)(1 + αh)	

For small h, 

exp(αh) = 1 + αh +
1
2

(αh)2 + . . . . 

So the error is 1
2

(αh)2x(n) consistent with the earlier formula.

78



The important consideration for the DEs is stablity.  The notion 
of stability of DEs differs from usual definition of stability of dy-
namical systems.

In most of our discussion on DEs, we consider ·x = αx as a 
prime example.  Note that  Eq. (1) reduces to the above near the 
zero of f(x).

Proof: If the concerned zero of f(x) is x=x0, then near x=x0, Eq. 
(1) becomes

·x′� = f′ �(x0, t)x′�

where x’= x-x.  Hence studying ·x = αx is  useful for studying 
general equation o type Eq. (1).

Stability
	 We again consider ·x = αx.  For α > 0, the exact and 
numerical solution grow.  So the chief concerns for such 
equations are related to the accuracy.

For α < 0, the exact solution converges to zero. However if 
|1 + αh | > 1,  xn+1 oscillates and |xn+1 |  grows with n, contrary to 
the exact solution. Due to this observation, the system is  said to 
be unstable. 

A Method is stable if it produces a bounded solution when the 
solution of the DE is bounded; otherwise it is unstable.

Conditionally stable: If the system is stable for some set of pa-
rameters, and unstable for some other set of parameters.

Unconditionally stable: Stable for all parameter values 

Unconditionally unstable: not stable for any parameter.

For complex α, the region of stability is  |1 + αh | < 1 as illus-
trated in the figure given below:

	

Examples:

(1) ·x = − 2x x(t) = x(0)e−2t

Euler’s scheme yields condition for stability as |1 − 2h | < 1, or 
−1 < 1 − 2h < 1, or h<1.  Hence the system is stable for h<1 and 
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unstable for h>1.  Hence the system is said to be conditionally 
stable.

(2) ·z = iz z(t) = z(0)eit.  Hence for the exact solution shows 
oscillations, and |z(t) |2 = |z(0) |2 .  Note that the magnitude and 
phase  of exp(−iπ t) are 1 and −π t respectively.

In one time step of size h, z(t) = z(0)eih, hence the amplitude 
and phase of eih are 1 and h respectively.  However, for the Euler’s 
scheme

z(1) = x(0)(1 + ih)

The amplitude and phase of (1+ih) are 1 + h2 and tan−1 h re-
spectively that differs from those of the exact solution.  Hence the 
system is said to unconditionally unstable.

Solve the above problems in terms of real and imaginary 
parts.

z = x + iy

·x = − y; ·y = x

or

d
dt (x

y) = (0 −1
1 0 ) (x

y)
The difference equations are

x(n+1) = x(n) − hy(n)

y(n+1) = y(n) + h x(n)

(x(n+1)

y(n+1)) = (1 = h
h 1 ) (x(n)

y(n))

The above matrix has Tr = 2, and det = 1 + h2

Hence the eigenvalues of the matrix are (1 ± h).  The solution 
grows along the eigen direction of 1+h.  Hence, the system is un-
conditionally unstable, consistent with the arguments given 
above.

(3)  DEs with variable coefficients: ·x = − 2xt = f (x, t) whose so-
lution is x(t) = exp(−t2) that converges to x(t) → 0  as t → ∞. 
Euler’s scheme yields x(n+1) = x(n)(1 − 2ht(n)).  Hence the solu-
tion becomes unstable when |1 − 2ht(n) | > 1.  That is the solu-
tion may be stable at early times, but it becomes unstable 
later. 

	 Here, locally we should write x(n+1) = x(n)(1 + h(∂f /∂x)n).

(4) Nonlinear equation:  ·x = − 2x2t = f (x, t) has an exact solu-
tion x(t) = x0 /[1 + αx0t2] that converges to x(t) → 0  as t → ∞. 
Euler’s scheme yields

	  x(n+1) = x(n)(1 − 2ht(n)[x(n)]2) 

Though tn increases with n, but x(n) decreases faster than t(n). 
Hence the |1 − 2ht(n)[x(n)]2 | < 1 for small h at all times.  Therefore, 
the system is unconditional  stable at all times.
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Backward or implicit  Euler Method 
 x(n+1) = x(n) + h f (x(n+1), t(n+1))

Here f (x(n+1), t(n+1)) is to be computed t = t(n+1) with x(n+1) 
which is unknown.  Hence the solution is in terms of itself.  This 
is the reason it is called an implicit scheme.

 This scheme is stable for the following reasons.

Let’s take the earlier example: ·x = αx.

In the backward of implicit Euler’s method

	  x(n+1) = x(n) + αh x(n+1)

	 x(n+1) =
1

1 − αh
x(n)

Since  1
|1 − αh |

< 1 for negative α, the system is uncondition-

ally stable.  In addition, 1
|1 − iπh |

< 1, hence the oscillatory solu-

tion of ·z = αz is stable.

Let us analyze the accuracy of the above scheme:

x(n+1) =
1

(1 − αh)
x(n)

= 1 + αh + α2h2 + …

Hence, for α < 0, the error =
1
2

(αh)2 to the leading order.

For nonlinear equations like ·x = − tx3, the implicit Euler’s 
scheme yields

x(n+1) = x(n) − ht(n+1)(x(n+1))3

which is solved using iterative procedure, e.g. using Newton-
Raphson method  (to be discussed later).

How to test convergence
h → h /2   see if error between the consecutive steps is de-

creasing.. If yes, the solution is converging.

Trapezoid Rule 
In this scheme

x(n+1) − x(n) =
h
2 [f (x(n), t(n)) + f (x(n+1), t(n+1))]

which is a combination of explicit and implicit schemes, 
hence it is called semi-implicit method as well. 

For the example, ·x = αx

Section 2

Implicit Schemes
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x(n+1) = x(n) +
h
2

α[x(n) + x(n+1)]

Therefore,

x(n+1) = ( 1 + αh /2
1 − αh /2 ) x(n)

≈ (1 + αh +
1
2

(αh)2 +
1
4

(αh)3 + …) x(n)

Hence this scheme is accurate up to O(h2), and the error is 
O(h3).

For the equation, ·z = iz, 

Euler’s implicit scheme yields

	 	 z(n+1) = ( 1 + ih /2
1 − ih /2 ) z(n) = Az(n)

for which |A | = 1, which is consistent with the exact solution. 
Note however that the phase is 2 tan−1(πh /2) that differs from the 
exact value of h.
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Other Approaches 
Consider ·x = f (x, t).

If the higher-order derivatives are easy to compute, then

	 ··x =
∂f
∂t

+ ·x
∂f
∂x

Therefore

x(n+1) = x(n) + h ·x +
h2

2
··x + HOT

	 = x(n) +
h
2 [2 ·x + h

∂f
∂t

+ nh ·x
∂f
∂x ]

which will be accurate up to O(h2).

Predictor-Corrector (PC)
Implicit Scheme based on Trapezoid rule is

x(n+1) = x(n) +
h
2 [f (x(n), t(n)) + f (x(n+1), t(n+1))]

Since x(n+1) is unknown, the computation of  f (x(n+1), t(n+1)) is 
difficult.  An easier way is to 

x(n+1)* = x(n) + h f (x(n), t(n))  [Predictor step]

x(n+1) = x(n) +
h
2 [f (x(n), t(n)) + f (x(n+1)*, t(n+1))] [Corrector]

The above scheme is accurate up to O(h2). 

Proof using example ·x = αx.  The predictor-corrector scheme 
yields

	  x(n+1) = x(n) +
h
2

[αx(n) + αx(n+1)] 

	 	 = x(n) +
h
2

[αx(n) + αx(n) + αh x(n)]

	 	 = [1 + αh +
αh2

2 ] x(n) + HOT

Hence PC scheme is accurate up to 2nd order.  

Runge-Kutta 2nd order (RK2)
This is another PC scheme in which

x(n+1/2) = x(n) +
1
2

h f (x(n), t(n)) 

x(n+1) = x(n) + h f (x(n+1/2), t(n+1/2))

Section 3

Predictor-Corrector 
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This scheme has the same accuracy as the predictor-
corrector method, which is easy to show using Taylor’s expan-
sion.

Runge-Kutta 4th order scheme (RK4)

	 [Euler half-step predictor]

	 x(n+1/2)* = x(n) +
h
2

f (x(n), t(n)) 

	 [Backward Euler half-step corrector]	 	 	

x(n+1/2)** = x(n) +
h
2

f (x(n+1/2)*, t(n+1/2)) 

	 [Mid point rule, full-step predictor]

x(n+1)*** = y(n) + h f (x(n+1/2)**, t(n+1/2))
	 [Simpson rule full-step corrector]

yn+1 = x(n) +
h
6 [f (x(n), t(n)) + 2f (x(n+1/2)*, t(n+1/2))]

	 	 +
h
6 [2f (x(n+1/2)**, t(n+1/2) + f (x(n+1)***, t(n+1))]

	 	 	 	 	

This scheme is 4th order accurate. Error = O(h5).
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These schemes are not covered in detail, but they are very 
useful.

Here x(n+1) not only depends on x(n), but also on the values at 
earlier times: x(n−1), x(n−2).  This is the reason why it is called 
multistep method.

Example: Leap-frog method for which

	 	 x(n+1) = x(n−1) + 2h f (x(n), t(n)).

For our usual example ·x = αx, Leap-frog yields

	 x(n+1) = x(n−1) + 2αh x(n). (1)

Clearly the solution is of the form ρn, whose substitution in 
the above yields

ρn+1 = ρn−1 + 2αhρn

⇒ ρ2 = 1 + 2αhρ

⇒ ρ2 − 2αhρ − 1 = 0

whose solutions are

	 ρ1,2 =
2αh ± (4αh)2 + 4

2
= αh ± (αh)2 + 1

Hence

ρ1 ≈ 1 + αh +
1
2

(αh)2 + HOT

ρ2 ≈ − 1 + αh −
1
2

(αh)2

Clearly,

	 x(n) = a1ρn
1 + a2ρn

2

It is easy to see that ρ2 is a spurious solution. If ρ2 = 0, the  
x(n+1) /x(n) = ρ1, which should be compared with its exact counter-
part exp(h) .  Note that exp(h) and ρ1 match to O(h2), hence leap-
frog scheme is second-order accurate.  But this is achievable 
only if a2 is set to zero.  This is one of the challenges of this 
scheme.

Multistep method

Advantage: (a) For the same accuracy, 1/2 the calculation 
compared to single-step method.  Compare with RK2.

(b) Leap-frog method is symmetric  under time reversal. To go 
from x(n+1) to x(n−1), the scheme will be

	 	 x(n−1) = x(n+1) − 2αh x(n)

which is same as Eq. (1).  This is not the case for Euler’s or  
RK2 method.

Section 4

Multistep method
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Disadvantage: Need to store more variables, e.g., leap-frog 
method requires storage of x(n) and x(n−1).  Starting at t=0 is also 
requires a different method, e.g. Euler’s method.

Other popular mutlistep methods are Adams-Bashforth and 
Adams-Moulton methods. The Adams-Bashforth method is writ-
ten as

	 x(n+1) = x(n) + h
k

∑
m=0

βm f (x(n+1−m), t(n+1−m))

with 

As illustrations, the two lowest-order Adams-Bashforth 
schemes are

x(n+1) = x(n) + h f (x(n), t(n))

x(n+1) = x(n) +
h
2

[3f (x(n), t(n)) − f (x(n−1), t(n−1))]

The Adams-Moulton method is written as

	 x(n+1) = x(n) + h
k

∑
m=0

βm f (x(n+1−m), t(n+1−m))

with 

m=0 m=1 m=2 m=3 m=4

β1m 1

2β2m 1 1

12β3m 5 8 -1

24β4m 9 19 -5 1

720β4m 251 646 -264 106 -19

As illustrations, the three lowest-order Adams-Moulton 
schemes are

x(n+1) = x(n) + h f (x(n+1), t(n+1))

x(n+1) = x(n) +
h
2

[ f (x(n+1), t(n+1)) + f (x(n), t(n))]

x(n+1) = x(n) +
h
12

[5f (x(n+1), t(n+1)) + 8f (x(n), t(n)) − 8f (x(n−1), t(n−1))]
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m=1 m=2 m=3 m=4 m=5

β1m 1

2β2m 3 -1

12β3m 23 -16 5

24β4m 55 -59 37 -9

720β4m 1901 -2774 2616 -1274 251



Set of Equations 
m equations

·xi = f (t, x0, x1, . . . , xm−1)

Numerical scheme:

Explicit scheme

x(n+1)
i = x(n)

i + h f (t, x(n)
0 , x(n)

1 , . . . , x(n)
m−1)

Time step n equations

Implicit scheme:

x(n+1)
i = x(n)

i + h f (t, x(n+1)
0 , x(n+1)

1 , . . . , x(n+1)
m−1 )

 solve iteratively.

For linear equations, matrix equation.

Application to Mechanics

	 Equation of motion of a particle in 1D

	 m ··x = f (x, ·x, t)

Convert it to 2 first-order ODEs

m ·x = p

·p = f (x, p /m, t)

Now apply the appropriate integration scheme.

Stiff equations
·u + au = v; ·v = − v

whose exact solutions are

v(t) = v(0)exp(−t)

u(t) = c1 exp(−at) +
1
a

exp(−t)

Two different time scales: 1/a, 1

If a ≫ 1. Two very different time scales 1/a, 1.

Time stepping a problem

Euler explicit scheme:

(u(n+1)

v(n+1)) = [1 − ah h
0 1 − h] [u(n)

v(n)]

Section 5

System of equation, Stiff equations
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whose eigenvalues are 1 − ah; 1 − h.

	 Stability condition (assuming a>1):

	 	 ah < 2 

Suppose a = 100, then h < 2/100 = 0.02.

For large a, h tends to be very small.

For initial condition (u,v) = (2,1).

v(t) = exp(−t)

u(t) = (2 −
1
a

)exp(−at) +
1
a

exp(−t)

Note that both u,v>0 for all t.

Semi implicit scheme like Crank Nicolson method can cure 
this problem.

	 u(n+1) = u(n) − ah ( u(n) + u(n+1)

2 ) + hv(n)

	 v(n+1) = v(n) − hv(n)

Stable method since

	 u(n+1) = ( 1 − ah /2
1 + ah /2 ) u(n) + hv(n)

	 v(n+1) = (1 − h)v(n)

The above scheme is stable for a>0.

Second method: Eliminate by a change of variable

	 ũ = exp(at)u

The equations transform to

	 ·̃u = v exp(−at)

Not stiff any more.
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·x = v

·v = F(x)

Time step

xn+1 = xn + hvn+1/2

vn+3/2 = vn+1/2 + hF(xn+1)

Note

xn = xn−1 + hvn−1/2   (1)

 vn+1/2 = vn−1/2 + hF(xn)  (2)

Init condition: (x0, v0)

Euler first step: v1/2 = v0 +
h
2

F(x0)

This scheme is time reversal symmetric

Under time reversal

xn−1 = xn − hvn−1/2

vn−1/2 = vn+1/2 − hF(xn)

That are same as Eqs. (1,2).

Section 6

Leap frog method, Verlet method for dynamics 
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1. Solve simple oscillator problem (ẍ=-x) using Euler and RK2 
scheme for h=0.1,0.01,0.001.  Analyze the error, and  verify 
the error law.  Go over a time period and see if you get 
energy conservation to a reasonable accuracy.

2. Solve the oscillator equation using Euler Backward scheme.

3. Solve ẍ = -x + x3 + sin(2 t) using RK2 method for different 
initial conditions.

4. Solve Newon’s equation for a pendulum with a massless 
string of length l and bob of mass m. Plot the angle and 
angular velocity as a function of time.  Also make the phase 
space plot.  It is better to use non-dimensional equation.

5. Solve Lorenz equation numerically: 

	 ·x = P(y − x)

	 ·y = x(r − z) − y

	 ·z = xy − βz

Make 3D plots of (x,y,z) for three sets of parameters: (1) P=10, 
r=0.5,  β=1;  (2) Pr=10, r=2, β=1;  (3) Pr=10, r=28, β=1.

Section 7

Exercise
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