
Linear PDEs are classified in three classes:

Parabolic

Elliptic

Hyperbolic

We will not delve into the properties of these types of equa-
tions.  Rather, we will illustrate how we solve some of the PDEs 
encountered in physics.

Section 1

Classification of PDES
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Solve: ∂tϕ = α
∂2ϕ
∂x2  with initial condition ϕ(x,0) = f (x), and van-

ishing boundary condition at x=0 and L.

It was first solved analytically by Fourier in 1807 using Fourier 
transform.

For a function φ(x) with a vanishing boundary condition in a 
box of length L:

ϕ(x) = ∑
kn

̂ϕ(kn)sin(knx)

with kn = nπ /L            

The boundary condition yields

 ϕ(0,t) = ϕ(1,t) = 0.

First analyze the above equation in Fourier space:

	 ∂t
̂ϕ(k) = − αk2 ̂ϕ(k)  (1)

which has an exact solution:

	 ̂ϕ(k, t) = ̂ϕ(k, t = 0)exp(−αk2t)

Numerical solution:

To solve Eq. (1), we employ one of the simplest integration 
scheme--Euler’s scheme that yields the following form of equa-
tion for every k:

̂ϕ(n+1)(k) = ̂ϕ(n)(k)[1 − α(Δt)k2]		 	 (2)

where (Δt) is the time step.

The stability criteria requires that

	 |1 − α(Δt)k2 | < 1 for all k.  Hence

 ´ αk 2
maxΔt < 2.

λ /2 = h (grid spacing)

kmax = 2π
λ

= π
h

Hence, 

Δt < 2h2

π2α

The aforementioned is called the spectral method since it in-
volves Fourier modes.

Section 2

Solving diffusion equation using spectral method
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Finite difference
Discretize into  n segments.
dϕi(t)

dt
= α

h2 (ϕt+1 − 2ϕi + ϕi−1)

Euler explicit

ϕ(n+1)
i = ϕ(n)

i + αΔt
h2 (ϕ(n)

i+1 − 2ϕ(n)
i + ϕ(n)

i−1)	 (1)

 Inaccurate and unstable for large Δt.

Courant–Friedrichs–Lewy (CFL) condition

To test the stability of the above scheme, we attempt the fol-
lowing form of function: 

ϕ(x, t) = exp(ik x)f (t) 	 (2)

and substitute it in Eq. (1).  Note that k correspond to one of 
the large-scale or small wavenumber Fourier mode.  Also note 
that the solution of the diffusion equation decays to zero asymp-
totically.  So, the numerical solution too should decay.  
	 	 Substitution of Eq. (2) in Eq. (1) yields

exp(ik x)f (n+1) = exp(ik x)[ f (n) + f (n) 2αΔt
h2 (cos(kh) − 1)]

Hence, the condition for stability is

	 |1 + 2αΔt
h2 (cos(kh) − 1) | < 1.

Since |cos(kh) − 1 | < 2, the condition for stability is

	 4αΔt
h2 < 1, or

	 Δt < h2

4α
.

Compare the above condition with that obtain for the spectral 

method that yields Δt < 2h2

π2α
.  These two limits are approximately 

same (compare π2/2 with 4).

Euler’s scheme is inaccurate. For better accuracy, we can em-
ploy RK2  scheme that yields:             

ϕ(n+1/2)
i = ϕ(n)

i + αΔt
h2 (ϕ(n)

i+1 − 2ϕ(n)
i + ϕ(n)

i−1)

ϕ(n+1)
i = ϕ(n)

i + αΔt
h2 (ϕ(n+1/2)

i+1 − 2ϕ(n+1/2)
i + ϕ(n+1/2)

i−1 )

Section 3

Solving diffusion equation using finite difference 
scheme
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RK2 scheme up accurate up to (Δt)2 per step.

The stability condition Δt < h2

4α
 is too stringent for small h, that 

is it require too small Δt.  There is a way to solve this problem, 
which is by employing a semi-implicit scheme called Crank Nickel-
son Scheme.

Crank Nickelson Scheme 

For time stepping we employ

ϕ(n+1)
i = ϕ(n)

i + αΔt
2h2 [(ϕ(n)

i+1 − 2ϕ(n)
i + ϕ(n)

i−1)

	 	 	 	 +(ϕ(n+1)
i+1 − 2ϕ(n+1)

i + ϕ(n+1)
i−1 )]

or

− αΔt
2h2 ϕ(n+1)

i−1 + (1 + αΔt
h2 ) ϕ(n+1)

i − αΔt
2h2 ϕ(n+1)

i+1

	 = ϕ(n)
i + αΔt

2h2 [ϕ(n)
i+1 − 2ϕ(n)

i + ϕ(n)
i−1]

that yields a tridiagonal matrix.  

Vanishing BC: Solve for ϕ1, . . . ϕn−2 (leave out ϕ0, ϕn−1 that are 
zeros).

0 	 1 	 2	 3	 4	 	 	 N-1

Matrix

X Y
Y X Y

Y X Y. . . . . .
Y X

ϕ1
ϕ2
ϕ3
ϕ4

ϕN−2

=

r1
r2
r3
r4

rN−2

where X = (1 + αΔt
h2 ) and Y = − αΔt

2h2 .

For periodic BC:  

	 	 	

Labels points on the circle as 0, 1, 2, .. N-1

X Y Y
Y X Y

Y X Y. . . . . .
Y Y X

ϕ0
ϕ1
ϕ2
ϕ3

ϕN−1

=

r0
r1
r2
r3

rN−2
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We solve for φ by solving the above tridiagonal matrix. The   
algorithm to solve tridiagonal matrices will be discussed along 
with other linear-algebra solvers. 
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Wave equation
	 ∂tϕ + c∂xϕ = 0

with c>0. The wave moves along +x direction.

In Fourier space

	 ∂t
̂ϕ(k) = − ick ̂ϕ(k)	 	 (1)

whose solution is ̂ϕ(k, t) = ̂ϕ(k,0)exp(ikct)

General solution: ϕ(x, t) = ∑
k

ak exp[ik(x − ct)]

We solve the wave equation using finite difference scheme. Let’s 
employ central-difference scheme for the space-derivative 
computation since it is accurate up to second order.  For time 
stepping, we employ Euler’s explicit scheme.

	 ϕ(n+1)
i = ϕ(n)

i − cΔt
2h

(ϕ(n)
i+1 − ϕ(n)

i−1)	 	 (2)	

For stability, we attempt ϕ(x, t) = exp(ik x)f (t) and substitute in 
Eq. (2) that yields

	 f (n+1) = f (n)[1 − icΔt
sin kh

h
].

Since |1 − icΔt
sin kh

h
| > 1, the integrating scheme is unstable, 

as discussed in the ODE chapter.

The stability issue is solved if we employ upwind scheme:

	 ϕ(n+1)
i = ϕ(n)

i − cΔt
h

(ϕ(n)
i − ϕ(n)

i−1)

Stability test with ϕ(x, t) = exp(ik x)f (t) yields

	 f (n+1) = f (n) [1 − cΔt
h

{1 − exp(−ikh)}].

Hence, the integrating scheme is stable if

	 1 − cΔt
h

{1 − exp(−ikh)} > 1

that yields

Section 4

Solving wave equation using finite difference scheme
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or	 cΔt
h

(1 − cos kh){ cΔt
h

− 1} < 0.

Since cos kh < 1, the condition for stability is 

	 cΔt
h

< 1.

The upwind scheme is often employed for solving wave equation, 
and also equations that has a front propagation. 

Exercises:

1. Solve the diffusion equation in one dimension: 
	
∂tφ =κ∇2φ

	 Plot Φ(x) at different times.
Take κ=10 and initial condition as 

	 What are your choices of Δt and Δx? Run you code till 10 dif-
fusive time unit.

2.Ferziger Exercise 5.3
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Burgers equation
∂tu + u∂xu = ν∂2

xu

Apply upwind scheme or RK2 for the nonlinear and central 
difference for the diffusion term.

When u(n)
i > 0

u(n+1)
i = u(n)

i − 1
h

u(n)
i (u(n)

i − u(n)
i−1) + νΔt

h2 (u(n)
i+1 − 2u(n)

i + u(n)
i−1)

When u(n)
i < 0

u(n+1)
i = u(n)

i − 1
h

u(n)
i (u(n)

i+1 − u(n)
i ) + νΔt

h2 (u(n)
i+1 − 2u(n)

i + u(n)
i−1)

Two time scales: h
2

ν
 and h

Umax
.  To be safe, use min of the 

two. For the space discretization

Δx:     h ≈ ν
Umax

Choose ν = 10−2, L = 2π, u(x,0) = sin x

KPZ equation
∂th = 1

2 (∂xh)2 + ν∂2
xh

Similar as above

Note u = − ∂xh relates the two equations

Fluid Equation
Incompressible NS equation

∂tu + u ⋅ ∇u = − ∇p + ν∇2u

∇ ⋅ u = 0

Leads to

	 ∇2p = − ∇ ⋅ [u ⋅ ∇u]
Poisson’s equation

Equations:

∂tui = − uj∂jui − ∂p − ν∇2ui

Spectral method:

dt and h?

FD Poission solver... 

Section 5

Burger’s equation
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