
Numerical integration of a function f(x) from x=a to x=b is writ-
ten as

I = ∫
b

a
f (x)d x =

n−1

∑
i=0

wi f (xi)       (1)

where wi are the weights and xi are abscissas.

The integration schemes can be classified into two schemes:

Simple methods: Here we choose xi as evenly spaced n 
points, and then compute wi.  If error is beyond admissible limit, 
then the number of points is increased.

Complex methods:  Here xi and wi are chosen in such a way 
the integral has minimum error.

Newton-Cotes Formulas

Newton-Cotes scheme belongs to the class of simple meth-
ods.  Here we divide the interval (a, b) into (n − 1) equal divisions, 
that is, (b − a)/(n − 1) = h. The abscissas are located at xj = a + jh 
where j = 0 : (n − 1).

We approximate the function f(x) using the Lagrange interpola-
tion:

	 	 P(x) = ∑ Lj(x)f (xj),

which is substituted in Eq. (1) that yields

I =
a

∫
b

f (x)d x ≈
a

∫
b

P(x)d x =
n−1

∑
j=0

f (xj)∫
b

a
Lj(x)d x

	 	 	 	 	 = (b − a)
n−1

∑
j=0

C(n)
j f (xj).

where

	 	 C(n)
j = 1

b − a

a

∫
b

Lj(x)d x.

Since Lj(x) are independent of the data f (xj), we conclude 
that Cn

j ’s are independent of f (xj). Using f (x) = 1, we conclude 
that

	 	 ∑
j

C(n)
j = 1.

Note that (b − a)C(n)
j  are the weights.

Now let us compute the C(n)
j  for some of the Legendre polyno-

mials.  For two points, the polynomial is

Section 2

Integration
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P2(x) = x − b
a − b

f (a) + x − a
b − a

f (b).

 When we integrate the above, we obtain

	 I =
a

∫
b

P(x)d x = h
2 ( f (a) + f (b)).

This method, called trapezoid rule, is accurate for linear func-
tions. 

Note that the error in the above computation is

E = ∫
b

a

f′�′ �(ζ )
2! (x − a)(x − b)d x = − 1

12 h3f′�′ �(ζ ).

When we use f (x) = P3(x) using the points x=a, (a+b)/2, b, we 
obtain

I =
a

∫
b

P(x)d x = h
3 ( f (a) + 4f ((a + b)/2) + f (b)),

This method is called Simpson’s rule, and it is accurate for 
polynomials up to third order. 

 Figure

The higher-order terms get more complex.  Here we list Ci in  
Table 1.

n N

2 2 1 1

3 6 1 4 1

4 8 1 3 3 1

5 90 7 32 12 32 7

6 288 19 75 50 50 75 19

7 840 41 216 27 272 27 216 41

Error analysis for Newton-Cote’s method
In an earlier chapter we derived that the error in Lagrange in-

terpolation with n points is

	 E(x) = f (x) − P(x) = f (n)(ζ )
n! ∏ (x − xi)

Hence the error in the integration by Newton-Cotes scheme is
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	 E = ∫
b

a
E(x)d x = f (n)(ζ )

n! ∫
b

a
d x∏ (x − xi)

We observe that for even n, the above integration is propor-
tional to hn+1, but it vanishes for odd n. For odd n, the error 
comes from the next term of the expansion that passes through 
the points (a,a+h,a+2h,...,b,b+h).  The error estimate is

E = ∫
b

a
E(x)d x = f (n+1)(ζ )

(n + 1)! ∫
b

a
d x [(x − b − h)∏ (x − xi)].

The above integrals yield the errors as

n Error

P2 (h3/12)f’(2)(ζ)

P3 (h5/90)f’(4)(ζ)

P4 (3h5/80)f’(4)(ζ)

P5 (8h7/945)f’(6)(ζ)

P6 (275h7/12096)f’(6)(ζ)

P7 (9h9/1400)f’(8)(ζ)

We illustrate the above error estimates using trapezoid and 
Simpson methods. For the trapezoid method

E2 = f (2)(ζ )
2! ∫

b

a
d x(x − a)(x − b).

We choose a=0 and b=1, hence h=1 that yields

E2 = f (2)(ζ )
12 .

For n=3, the leading-order Legendre expansion yields

E2 = f (3)(ζ )
3! ∫

1

0
d x x(x − 1/2)(x − 1) = 0.

Hence, for estimation, we pick the next polynomial using 
points (0,1/2,1,3/2).  The error is

E2 = f (4)(ζ )
4! ∫

1

0
d x x(x − 1/2)(x − 1)(x − 3/2) = h5

90 f (4)(ζ ),

where h=1/2. Since f4(x)=0 for a third-order polynomial, 
Simplson’s method is accurate for polynomials up to cubic order.

We can compute the coefficients of Table 1 as well as error for-
mula using Sympy.

x,a,b,h = symbols(('x','a','b','h'))

n = 4

h = (b-a)/(n-1)

xarray = []

for i in range(n):

    xarray.append(a+i*h)

def Newton_cotes_coeff(xarray):

    n = len(xarray)
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    coeff = []

    for j in range(n):

        numr = 1; denr = 1;

        for i in range(n):

            if (j != i):

                numr *= (x-xarray[i])

                denr *= (xarray[j]-xarray[i])

        Cj = simplify(integrate(numr/denr, (x,a,b))/(b-a))

        coeff.append(Cj)

    factor = 1

    for i in range(n):

        factor *= (x-xarray[i])

    if (n%2 == 1):

        error_factor = simplify(integrate(factor*(x-b-h), (x,a,b))/
(h**(n+2)*factorial(n+1)))

    else:

        error_factor = simplify(integrate(factor, (x,a,b))/
(h**(n+1)*factorial(n)))

    return coeff, error_factor

Example: ∫
π/2

0
d x sin x

Newton_cotes.py

# assume a single interval
# Solve int_a^b f(x)dx using m-th order Newton-Cotes method
def Newton_cotes(m, f, a, b):
    h=(b-a)/(m-1)

    if (m==2):
        return (b-a)*(f(a)+f(b))/2
    elif (m==3):
        return (b-a)*(f(a)+4*f((a+b)/2)+f(b))/6
    elif (m==4):
        return (b-a)*(f(a)+3*(f(a+h)+f(a+2*h))+f(b))/8
    elif (m==5):
        return (b-a)*(7*(f(a)+f(b)) + 32*(f(a+h)+f(b-h)) + 12*f(a+2*h))/
90
    elif (m==6):
        return (b-a)*(19*(f(a)+f(b)) + 75*(f(a+h)+f(b-h)) + 
50*(f(a+2*h)+f(a+3*h)))/288

# (b-a) divided into n-1 interval; given n points
# Trapezoid rule
def Newton_cotes2(f, a, b, n):
    h = (b-a)/(n-1)
    ans = 0
    for i in range(n):
        ans += f(a+i*h)
    
    ans -= (f(a)+f(b))/2
    return h*ans

def f(x):
    return np.sin(x)
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Fig: Error in Newton-Cotes method vs. degree of the polyno-
mial, n, used.

The figure shows that error drops when we go from 2 to 3, but 
flattens from 3 to 4.  See the error table for the reasons.

We can also integrate using smaller h, but summing over all 
the interval. We perform the above using trapezoid rule.  The fol-
lowing figure illustrates how the error decreases with h as h3, as h 
is decreased. The green dashed line represents h3.
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Gaussian Quadrature 

In this method, we choose both xm and wm of  	 	 	

	 	 I =
b

∫
a

f (x)d x ≈
N−1

∑
m=0

wm f (xm)  (1)

so that the integral is accurate. Thus we have 2N unknowns. If 
we demand exact quadrature for  f (x) = 1,x, x2, …, x2N−1, we will 
have 2N equations using which we can obtain the aforemen-
tioned 2N unknowns.

Example: Work out for N=2 for [-1,1].

Solution: We require that the integral is exact for 
f (x) = 1,x, x2, x3, which yields the following four equations:

2 = w0 + w1

0 = w0x0 + w1x1

2
3 = w0x2

0 + w1x2
1

0 = w0x3
0 + w1x3

1 ,

whose solutions are w0 = w1 = 1, and x1 = − x0 = 1/ 3. 

Hence 

∫
1

−1
f (x)d x = f (− 1

3 ) + f ( 1
3 ).

The above integral is exact as long as f (x) is a polynomial of 

degree 3 or less.  We verify for f (x) = x2 + 1
2 x3, for which the RHS 

of the above equation yields 2/3, which is the exact integral.

The above procedure however is quite tedious for a general 
function.  In the following discussion, we provide a general formu-
lation based on orthogonal polynomials. Note that our formulation 
should yield an exact quadrature for any polynomial of degree 
2N-1 or less. We denote this function by f(x).  

Suppose that the orthogonal polynomials used in our method 
is ϕi(x), and they satisfy the following orthogonality relation:

∫
b

a
w(x)ϕi(x)ϕj(x) = δijγi,

where γi are a constants, i = 0 : (N − 1), and w(x) is the weight 
function.  Note that not all the polynomials need to be of (N-1)th 
order.  However, we demand that at least one of them is of (N-1)-
order.  In this scheme the integral is

I =
N−1

∑
j=0

wj f (xj),

where xj‘s are the roots of ϕN(x), and wj‘s are 

wj = − aNγN

ϕ′�N(xj)ϕN+1(xj)

We provide the proof of the above scheme in two steps:

Step 1: We write the function f (x) as
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	 f (x) = qN−1(x)ϕN(x) + rN−1(x), 	 (2)

where ϕN(x) is the N-th order  polynomial,  qN−1 is the quotient, 
and rN−1 is the remainder. Both qN−1 and rN−1 are polynomials of 
order (N-1), hence

qN−1 =
N−1

∑
j=0

ajϕj(x),

where aj’s are the coefficients. Integration of Eq. (2) yields

∫
b

a
w(x)f (x)d x = ∫

b

a
w(x)qN−1(x)ϕN(x)d x

	 	 +∫
b

a
w(x)rN−1(x)d x.    (3)

The integral 

∫
b

a
w(x)qN−1ϕN(x)d x = ∑

j
aj ∫

b

a
w(x)ϕj(x)ϕN(x)d x = 0  due to or-

thogonality property.   Hence

∫
b

a
w(x)f (x)d x = ∫

b

a
w(x)rN−1(x)d x.

Step 2: The N-th order polynomial ϕN(x) has N roots.  We 
choose these roots, xj( j = 0 : N ), as the abscissa, hence 
ϕN(xj) = 0.  The function f (x) given at these xj’s , i.e., yj = f (xj). Us-
ing Eq. (2)

f (xj) = qN−1(xj)ϕN(xj) + rN−1(xj) = rN−1(xj).

Expand rN−1(x) using Lagrange interpolation

rN−1(x) = ∑
j

rN−1(xj)Lj(x),

substitution of which in Eq. (3) yields

∫
b

a
w(x)f (x)d x = ∫

b

a
w(x)rN−1(x)d x = ∑

j
rN−1(xj)∫

b

a
w(x)Lj(x)d x

	 	 = ∑
j

wjrN−1(xj) = ∑
j

wj f (xj),

where wj = ∫
b

a
w(x)Lj(x)d x.  Using

	 ∏
i,i≠j

(x − xi) = ∏ (x − xi)
x − xj

= ϕN(x)
aN(x − xj)

,

where aN is the coefficient of xN in ϕN(x). Using L’Hospital rule, 
we take the limit x → xj, which yields

∏
i,i≠j

(xj − xi) =
ϕ′ �N(xj)

aN
.

Therefore,

wj = ∫
b

a
d xw(x)

∏i,i≠j (x − xi)
∏i,i≠j (xj − xi)

= 1
ϕ′�N(xj) ∫

b

a

w(x)ϕN(x)
x − xj

d x.   (4)

Using Christoffel Darboux identity we can simplify it further to 
N

∑
i=0

ϕi(x)ϕi(y)
γi

=
ϕN+1(x)ϕN(y) − ϕN(x)ϕN+1(y)

aNγN(x − y)    (5)
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where ∫
b

a
w(x)ϕi(x)ϕj(x) = δijγi and 

	 am =
Am+1
Am

with Am as the coefficient of xm in ϕm(x).  Choosing y = xj, a 
zero of ϕN(x), substitution of which in Eq. (5) yields

N

∑
i=0

ϕi(x)ϕi(xj)
γi

= −
ϕN(x)ϕN+1(xj)
aNγN(x − xj)

.

Integration of the above wrt ∫
b

a
d xw(x)ϕ0(x) . . .  and using the 

fact that ϕ0(x) = const yields

ϕ0(xj) = −
ϕN+1(xj)

aNγN
ϕ0(x)∫

b

a
d x

w(x)ϕN(x)
(x − xj)

.

Hence 

	 ∫
b

a
d x

w(x)ϕN(x)
(x − xj)

= − aNγN

ϕN+1(xj)
.

Hence

wj = − aNγN

ϕ′�N(xj)ϕN+1(xj)
.	 	 	 (6)

We state without proof that the error in Gaussian quadrature is

Eint = f (2n)(ζ )
(2n)! ∫

b

a
w(x)W(x)d x	 	 (7)

[NOT] Alternate proof:

We can also use Hermite’s interpolation to derive the formula 
for Gaussian quadrature:

f (x) ≈ P(x) = ∑
j

Uj(x)yj + ∑
j

Vj(x)y′�j  (1)

with 

Uj(x) = [1 − 2L′�j(xj)(x − xj)][Lj(x)]2;

Vj(x) = (x − xj)[Lj(x)]2

The integral is

∫
b

a
w(x)f (x)d x ≈ ∫

b

a
w(x)P(x)d x

= ∑
j

yj ∫
b

a
w(x)Uj(x)d x + ∑

j
y′�j ∫

b

a
w(x)Vj(x)d x

We choose the abscissa in such a way that the second inte-
gral is zero, i.e.,

∫
b

a
w(x)Vj(x)d x = ∫

b

a
w(x)(x − xj)[Lj(x)]2d x = 0.

Therefore,

∫
b

a
w(x)P(x)d x = ∑

j
yj ∫

b

a
w(x)Uj(x)d x
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= ∑
j

yj ∫
b

a
w(x)[Lj(x)]2d x = ∑

j
yjwj

Thus the weight is

wj = ∫
b

a
w(x)[Lj(x)]2d x

Compare it with the other formulas derived in the previous 
derivation.

Error:

We derived in the Hermite’s polynomial that the error is

E = f (x) − P(x) = f (2n)(ζ )
(2n)! W(x),

where 

	 W(x) =
n−1

∏
i=0

(x − xi)2

Hence the error in the quadrature would be

Eint = f (2n)(ζ )
(2n)! ∫

b

a
w(x)W(x)d x

For integration of smooth functions within a limit, it is best to 
use Legendre polynomials, for whichw(x) = 1, a = − 1, and 
b = 1.  We will show later how the integration scheme can be gen-
eralized to arbitrary a and b.

The leading Legendre polynomials are

ϕ0(x) = 1

ϕ1(x) = x

ϕ2(x) = 3x2 − 1
2

ϕ3(x) = 5x3 − 3x
2

PLOTS OF LEGENDRE POL
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Also,

γj = 2
2j + 1

Aj = (2j )!
2 j( j!)2 ,  aN = 2

N + 1

Hence, using Eq. (6) we obtain

	 wj = − 2
( j + 1)ϕ′ �N(xj)ϕN+1(xj)

	

Using an identity

	 (1 − x2)ϕ′�j(x) = ( j + 1)xϕj(x) − ( j + 1)ϕj+1(x)

and substituting j = N; x = xj we obtain

	 wj = 2
(1 − x2

j )[ϕ′�N(xj)]2

N=2: ϕ2(x) = 3x2 − 1
2 , ϕ′�2(x) = 3x

The zeros of the polynomials at x = − 1/ 3,1/ 3. Also, 
ϕ′�2( ± (1/ 3)) = ± 3. Therefore, w0 = w1 = 1.

N=3, ϕ2(x) = 5x3 − 3x
2 .

The zeros of the polynomials at x = − 3/5,0, 3/5, substitu-
tion of which yields:

w0 = w2 = 5/9,w1 = 8/9.

We list the abscissa and weights in the following table:

n xi wi

2 ±0.5773503 1

3 0 0.888889

±0.774579 0.555556

4 ±0.339981 0.652145

±0.861136 0.347855

5 0 0.568889

±0.538469 0.478629

±0.90618 0.236927

Example code

# gaussian_quad.py

# sum(w_i f(x_i))

def my_gauss_quadrature(warray, xarray, f):

	 yarray = np.zeros(len(xarray))

	 for i in range(len(xarray)):

	 	 yarray[i] = f(xarray[i])	 	 	

	 return sum(warray*yarray)
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xarray = np.array([-1/np.sqrt(3),1/np.sqrt(3)])

warray = np.array([1,1])

Example 1:  ∫
1

−1
x2d x = 0.6666667, exact value with n = 2.

Example 2:  ∫
1

−1
exp(x)d x for  n = 2,3,4  

The integral converges quickly with N.  In the following Table, 
we list the errors for N=2,3,4, and the builtin function.  The error is 
plotted in Figure that shows that the error varies as

En = exp(−0.318N2 − 3.16N + 2.7)

Thus the convergence is exponential (for small N).

n I error

2 2.342 0.00770

3 2.35033 6.55E-05

4 2.3504021 2.87E-07

from Python 
Gauss quad 2.3504023872 8.23E-10

For a variable x’ in an arbitrary interval [a,b], we make a 
change of variable  x′� = αx + β, with (x′� = − 1,x = a) and 
(x′� = 1,x = b)..   Hence a = − α + β, and b = α + β, leading to 
α = (b − a)/2, β = (b + a)/2. Hence,

I = ∫
b

a
f (x′�)d x′� = = b − a

2 ∫
1

−1
f (αx + β )d x.
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Laguerre-Gauss quadrature
We often encounter integral of the form

	 ∫
∞

0
e−xf (x)d x,  

w(x) = exp(−x) is the weight function.  One of the example is 
Hydrogen atom.  Note that the integration of the above function 
with Newton-Cote’s scheme will be very expensive because we 
have to take many intervals to reach x = ∞.

we use Laguerre polynomials whose orthogonality relation is

∫
∞

0
e−xLn(x)Lm(x)d x = δm,n

∫
∞

0
e−xf (x)d x =

N−1

∑
j=0

wj f (xj),

where xi are the roots of LN(x). Also,

γj = 1

Aj = (−1) j

j! ,  aN = − 1
N

Hence

	 wj = − 1
(N + 1)ϕ′�N(xj)ϕN+1(xj)

= − 1
NϕN−1(xj)ϕ′�N(xj)

	

Using identities we obtain

	 wj = 1
xj[ϕ′�N(xj)]2 =

xj

(N + 1)2[LN+1(xj)]2

[REF: mathworld.wolfram.com]

Laguerre-Gauss quadrature

Hermit-Gauss quadrature

We also encounter integral of the form 
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∫
∞

−∞
e−x2f (x)d x = ∑

j
wj f (xj).

Here w(x) = exp(−x2) is the weight function.  For such integrals 
we employ Hermite’s polynomials.  Here xi are the roots of HN(x), 
and wi’s are given below. Recall the wavefunction of the harmonic 
oscillator.

Hermite-Gauss quadrature

n xi wi

2 ±0.707107 0.886227

3 0 1.18164

±1.22474 0.295409

4 ±0.524648 0.804914

±1.65068 0.0813128

5 0 0.945309

±0.958572 0.393619

±2.02018 0.0199532
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