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Classification'of PDES

Linear PDEs are classified in three classes:
Parabolic

Elliptic

Hyperbolic

We will not delve into the properties of these types of equa-
tions. Rather, we will illustrate how we solve some of the PDEs
encountered in physics.
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.SO|Vihgfd'iffl:I‘S.iOh_ equation using spectral method ,

To solve Eq. (1), we employ one of the simplest integration

0% scheme--Euler’s scheme that yields the following form of equa-
Solve: 0,¢p = a? with initial condition ¢(x,0) = f(x), and van- tion for every k:
X
ishing boundary condition at x=0 and L. M) = dDK)[1 — a(ADK?] )
It was first solved analytically by Fourier in 1807 using Fourier where (Ar) is the time step.

transform. . o .
The stability criteria requires that

For a function ¢(x) with a vanishing boundary condition in a

box of length L: |1 —a(ADk?| < 1 for all k. Hence

. A

$@) = Y Pk, )sin(k,x) ak? At < 2.
- A12 = h (grid spacing)

max /1 h

The boundary condition yields

Hence,
¢0,t) = ¢p(1,1) = 0.
2h?
First analyze the above equation in Fourier space: At < Py
Lo S a
0,p(k) = — ak=¢p(k) (1) The aforementioned is called the spectral method since it in-
which has an exact solution: volves Fourier modes.

dk,1) = Pk, t = 0)exp(—ak?s)

Numerical solution:
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Finite difference
Discretize into n segments.

do(1) a
0 = ﬁ(¢t+l —2¢;+ i)

Euler explicit

¢(n+l) _ ¢(”) + ¢z(-:—1)1 ¢(n) + ¢(n)) (1)

Inaccurate and unstable for large Ar.

Courant-Friedrichs-Lewy (CFL) condition

To test the stability of the above scheme, we attempt the fol-
lowing form of function:

d(x, 1) = exp(ikx)f(t)  (2)

and substitute it in Eqg. (1). Note that k correspond to one of
the large-scale or small wavenumber Fourier mode. Also note
that the solution of the diffusion equation decays to zero asymp-
totically. So, the numerical solution too should decay.
Substitution of Eq. (2) in Eq. (1) yields

exp(ikx)f "D = exp(ikx)[ f™ + f(n)

(cos(kh) — 1]

Hence, the condition for stability is

IN
~(cos(kh) — D] < 1.

|1+

Since |cos(kh) — 1] < 2, the condition for stability is

da At
K2

<1,or

h2
At < —.
4o

Compare the above condition with that obtain for the spectral
2

2h
method that yields Ar < — These two limits are approximately
/0

same (compare 1%/2 with 4).

Euler’s scheme is inaccurate. For better accuracy, we can em-
ploy RK2 scheme that yields:

¢(n+1/2) — ¢(n) + ¢1(Jrrli ¢(n) + ¢(n))
¢(n+1) _ ¢(n) (¢(n+1/2) ¢(n+1/2) + ¢(n+1/2)

i+1
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RK2 scheme up accurate up to (Af)? per step.

2

The stability condition At < — is too stringent for small h, that

4o

is it require too small At. There is a way to solve this problem,
which is by employing a semi-implicit scheme called Crank Nickel-
son Scheme.

Crank Nickelson Scheme

For time stepping we employ

¢(n+1) — ¢(n) ¢1(J’3 ¢(n) + ¢(n))

3

+(¢l(-'r_L-ll-l) 2¢(n+1) + ¢(n+1))

or

alt alAt alAt
_ZT pHD o “ab (m+1) _ Y25 (1)
242 ¢ <1 + > ¢i 2 Titl

alt

— o™ +
=% 2n2

[4’1-(2 — 2™ + ¢<n)]

that yields a tridiagonal matrix.

Vanishing BC: Solve for ¢y, ... ¢,_, (leave out ¢, ¢,_, that are

Zeros).

Matrix
( \
X v Pl (o
Y X Y ¢ 2
Y X VY ds |=| 73
e e Ty
Y X 5 \/'N-2
\¢N—2) /
alt alAt
where X=(1+—)and Y = — —.
h? 2h?

For periodic BC:

Labels points on the circle as 0, 1, 2, ..

( ¢ )
0
X Y N g (7o
Y X Y 1 "1
Y X Y o | =]
.. .. ¢3 1’3
Y Y X o] e

N-1
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We solve for ¢ by solving the above tridiagonal matrix. The
algorithm to solve tridiagonal matrices will be discussed along
with other linear-algebra solvers.
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Wave equation
0, +cop =0

with ¢>0. The wave moves along +x direction.
In Fourier space

0,p(k) = — ick(k) (1)
whose solution is ¢(k, 1) = ¢(k,0)exp(ikcr)

General solution: ¢ (x,1) = 2 a;, explik(x — ct)]
k

We solve the wave equation using finite difference scheme. Let’s
employ central-difference scheme for the space-derivative
computation since it is accurate up to second order. For time
stepping, we employ Euler’s explicit scheme.

pID = g <¢ff{ $™) 2)

For stability, we attempt ¢(x, 1) = exp(ikx)f(¢) and substitute in
Eq. (2) that yields

FOD £ — At sinkh

].

inkh
Since |1 —icAt "

as discussed in the ODE chapter.

The stability issue is solved if we employ upwind scheme:
¢i(n+1) ¢(n) (4’7(”) ¢(n))

Stability test with ¢(x, r) = exp(ikx)f(¢) yields
fltD) = g [1 - %“{1 - exp(—ikh)}] .

Hence, the integrating scheme is stable if

cAt ,
1 — T{l —exp(—ikh)}

that yields

| > 1, the integrating scheme is unstable,
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cAt cAt
or T(l-COSkh){T—l} < 0.

Since cos kh < 1, the condition for stability is

cAt
—< 1.
h

The upwind scheme is often employed for solving wave equation,
and also equations that has a front propagation.

Exercises:
1. Solve the diffusion equation in one dimension:
9,0=xV’¢

Plot ®(x) at different times.
Take k=10 and initial condition as

What are your choices of At and Ax? Run you code till 10 dif-
fusive time unit.

2.Ferziger Exercise 5.3
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Burger’s equation

Burgers equation Similar as above
O + udu = vou Note u = — dh relates the two equations

Apply upwind scheme or RK2 for the nonlinear and central
difference for the diffusion term.

Fluid Equation

Incompressible NS equation
When u > 0

du+u-Vu=-Vp+vViu

1 VAt
(1) — 1) _ Z ), ) iy 4 277 () gy, () ()
u =u, . u"(u; u') + e () —2u” + u’) V-u=0

When u™ < 0 Leads to

Vz =-V. [u . VU]
1 VAt P

uD = 0y 0y 2 (0 9y ) 4y ()

i i p2 il T - Poisson’s equation

2

Two time scales: — and

v max

two. For the space discretization

. To be safe, use min of the Equations:

Ou; = — u;0;u; — 0p — vViu,

Av hoa Y Spectral method:
Umax
—10-2 T — — o
Choose v =107, L = 2x, u(x,0) =sin x dt and h?
KPZ equation
1
0.h = 5((’))}1)2 +v0%h FD Poission solver...
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