Chapter 5

ODE solvers w4

We often encounter ordinary differential equations
(ODE) in physics. For example, Newton’s equation
is a second-order DE in time. In this chapter we will
detail the important numerical methods to solve 0
ODEs. R



-Section1 . - '

- Explicit.schemes

In most of our discussion we focus on first-order DEs since
DEs of any any order can be reduced to a set of 1st order DEs.
For example, X = F(x, 1) is equivalent to a set of two first-order
DEs:

xX=v, v=F(x,1).

In the following discussion we will describe how to solve 1st-
order DEs.

ODE Solver
& i =t (1)

whose solution is

tn+1
xt) () — J f(x, t)dt
t

n

where x"*+D x™ gre shorthand for x(tn+1) and x(t») respec-
tively. We obtain the solution by performing integration, which
are

£(n1)

J fx,dt = hf(x™,t™) (2) called Forward difference

1)

~ hf (D ¢ty (3) Backward diference

~ hf (172 1 +112)y (4) Midpoint rule.
1
~ Eh [, 1) + fx*D, i+ )] (5) Trapezoid rule
When we use three points, we obtain

1
x(n+1) _ x(n—l) ~ gh [f(x(n—l)’ t(n—l)) + 4f(x(n)’ t(n)) +f(x(n+1)’ t(n+1))]

(6)

which is called the Simpson rule. Note that the solution
X(tn+1) here depends on x(t») and x(tn-1), hence it is called a multi-
step method.

Also note that the Forward difference scheme is explicit, and
rest all are implicit or semi-implicit.

In the following figure we illustrate Euler’s forward and back-
ward schemes, as well as central-difference scheme. Clearly,
the central difference scheme is more accurate.

Two major issues in the solution of DEs are accuracy and sta-
bility. We will discuss accuracy first.
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h* d
=x" + hf(x™ )+ ——+...
X fan)+——

with 4 = g +5ca—f
dt ot ox

Clearly Euler’'s method has

1
Error per step = Ehzic' x™, 1)

1
Error in n steps if the errors are additive = Enhjc'(x(”), 1),

which is possible if df/dt has the same sign at all the steps.

since nh = 1;,,, hence the error is proportional to t, which is
not good for accuracy.

Example: Consider a DE x = ax whose exact solution is
x(t) = x(0)e®.

In one step, the exact solution yields

Accuracy .
. . . . . xHD = x™ exp(ah)
How much is the error in a given scheme. Firstly we consider
the forward difference scheme, which is also called Euler’s However Euler’s scheme yields
Scheme

xD = x(1 + ah)

(n+1) _ .(n) (n) +(n)
X = x4+ hf(x",t
f ) For small h,

According to the Taylor’s series. the solution of Eq. (1) is 1
5 exp(ah) =1 +ah+—(ah)*+....
1 . h 2
X0t )=x(”)+hx+7x+...

1
So the error is E(ah)Qx(”) consistent with the earlier formula.
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The important consideration for the DEs is stablity. The notion
of stability of DEs differs from usual definition of stability of dy-
namical systems.

In most of our discussion on DEs, we consider x = ax as a
prime example. Note that Eq. (1) reduces to the above near the
zero of f(x).

Proof: If the concerned zero of f(x) is x=xo, then near x=xo, EQ.
(1) becomes

X' = f(xp, )X’

where x’= x-x. Hence studying x = ax is useful for studying
general equation o type Eq. (1).

Stability

We again consider x = ax. For a > 0, the exact and
numerical solution grow. So the chief concerns for such
equations are related to the accuracy.

For a < 0, the exact solution converges to zero. However if
|1+ah|>1, x,,, oscillates and |x,,,| grows with n, contrary to
the exact solution. Due to this observation, the system is said to
be unstable.

A Method is stable if it produces a bounded solution when the
solution of the DE is bounded; otherwise it is unstable.

Conditionally stable: If the system is stable for some set of pa-
rameters, and unstable for some other set of parameters.

Unconditionally stable: Stable for all parameter values

Unconditionally unstable: not stable for any parameter.

For complex a, the region of stability is |1+ ah| < 1 as illus-
trated in the figure given below:

Im(ah)
UNSTABLE
+1
STABLE
% } Re(ah)
-3 - -1

FIGURE 4.3. Stable and unstable regions for the Euler metho«

Examples:
Mx=-2x x@) =x(0)e

Euler’s scheme yields condition for stability as |1 —2k4| < 1, or
—1<1-2h < 1, 0r h<1l. Hence the system is stable for h<1 and
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unstable for h>1. Hence the system is said to be conditionally
stable.

() z =iz z(t) = z(0)e". Hence for the exact solution shows
oscillations, and |z()|* = |z(0)|*. Note that the magnitude and
phase of exp(—ixt) are 1 and —xt respectively.

In one time step of size h, z(¢) = z(0)e™, hence the amplitude
and phase of ¢”* are 1 and h respectively. However, for the Euler’s
scheme

7D = xO1 + ih)

The amplitude and phase of (1+ih) are /1 + 4% and tan~! 4 re-
spectively that differs from those of the exact solution. Hence the
system is said to unconditionally unstable.

Solve the above problems in terms of real and imaginary
parts.
Z=x+1y

X==-y, y=x

or
i(x)_ 0 -1 <x)
de\Y) \1 0)\V
The difference equations are

XD = x0) _ py @

Goen) =G 7 Go)
y(+D hoo1 ym

The above matrix has Tr = 2, and det = 1 + />

Hence the eigenvalues of the matrix are (1 = 4). The solution
grows along the eigen direction of 1+h. Hence, the system is un-
conditionally unstable, consistent with the arguments given
above.

(3) DEs with variable coefficients: x = — 2xt = f(x, t) whose so-
lution is x(¢) = exp(—¢?) that converges to x(t) - 0 as t — oo.
Euler’s scheme yields x"*) = x((1 — 2ht™). Hence the solu-
tion becomes unstable when |1 — 24" | > 1. That is the solu-
tion may be stable at early times, but it becomes unstable
later.

Here, locally we should write x""+D = x™(1 + h(df/ox),).

(4) Nonlinear equation: x = — 2x*t = f(x, ) has an exact solu-
tion x(¢) = x,/[1 + axyt?] that converges to x(t) - 0 as t — co.
Euler’s scheme yields

y+1) — x(”)(l _ th(n)[x(n)]Z)

Though ¢, increases with n, but x™ decreases faster than ™.
Hence the |1 — 24t™[x"™]?| < 1 for small h at all times. Therefore,
the system is unconditional stable at all times.

80



‘.S'ec,tion_rzi ¥R

Backward or implicit Euler Method
x(n+1) — x(n) + hf(x(”“), t(n+1))

Here f(x"+D, t"*D) is to be computed ¢ = t"*+D with x+D
which is unknown. Hence the solution is in terms of itself. This
is the reason it is called an implicit scheme.

This scheme is stable for the following reasons.
Let’s take the earlier example: x = ax.
In the backward of implicit Euler’s method

x(n+1) — x(n) + ahx(n+1)

ceh—

1 —ah

: 1 : : "
Since W < 1 for negative a, the system is uncondition-
—-—a

ally stable. In addition, < 1, hence the oscillatory solu-

|1 —izh|
tion of z = az is stable.

Let us analyze the accuracy of the above scheme:

RS P S

(1 —ah)

=14+ah+a’h®+ ...

1
Hence, for a < 0, the error = E(och)2 to the leading order.

For nonlinear equations like x = — tx3, the implicit Euler’s
scheme yields

x(n+1) — x(n) _ ht(n+1)(x(n+1))3

which is solved using iterative procedure, e.g. using Newton-
Raphson method (to be discussed later).

How to test convergence
h — h/2 see if error between the consecutive steps is de-
creasing.. If yes, the solution is converging.

Trapezoid Rule
In this scheme

L) _ ) g [F(, ) 4 femD, (D))

which is a combination of explicit and implicit schemes,
hence it is called semi-implicit method as well.

For the example, x = ax
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Therefore,

coeny — (1HARIZN )
1—ah/2

1 ] 3
~ | 1+ah+—=(ah)?+—(ah)’+... | x®
2 4
Hence this scheme is accurate up to O(#?), and the error is
O(h3d).
For the equation, z = iz,

Euler’s implicit scheme yields

1 +ih/2
(n+l) — ("7 m — A,
© (1 _ ih/2> : ©

for which |A| = 1, which is consistent with the exact solution.

Note however that the phase is 2 tan~!(zh /2) that differs from the
exact value of h.
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| Sectlon 3

._Predlctor-Corrector

Other Approaches

Consider x = f(x, 1).

If the higher-order derivatives are easy to compute, then

PN
ot o0x
Therefore

h2
x0T = ™ 4 opg 75& + HOT

h 0 0
= x4 — 2x+h—f+nhx—f
2 ot ox

which will be accurate up to O(h?).

Predictor-Corrector (PC)

Implicit Scheme based on Trapezoid rule is

Lo o [f(xm) ()  FD, 40 D)]

Since x™1) is unknown, the computation of f(x"+!, (D) js
difficult. An easier way is to

x0HD* = x4 p (™, ™) [Predictor step]

h x
wD) — e 2 [f(x(”) 1) + D7 1+ D) [Corrector]

The above scheme is accurate up to O(h?).

Proof using example x = ax. The predictor-corrector scheme
yields

XD = x4 g[ax(”) + axtD]
(n) h (n) (n) (n)
=X +E[ax + ax"V + ahx"]
ah?
= 1+ah+7 x™ + HOT

Hence PC scheme is accurate up to 2nd order.

Runge-Kutta 2nd order (RK2)

This is another PC scheme in which

x(n+1) — x(n) + hf(x(”+1/2), t(n+l/2))
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This scheme has the same accuracy as the predictor-
corrector method, which is easy to show using Taylor’s expan-
sion.

Runge-Kutta 4th order scheme (RK4)

[Euler half-step predictor]

[Backward Euler half-step corrector]

x(n+1/2)** — x(n) + gf(x(n+l/2)*’ t(n+l/2))

[Mid point rule, full-step predictor]

x(n+1)*** — y(n) + I’lf (x(n+1/2)**’ t(n+1/2))
[Simpson rule full-step corrector]

h ;
Vil = x(”) + g [f(x(”), f(n)) + 2f(x(n+1/2) , f(n+1/2))]

h
_|_g [2f(x(n+1/2)**’ t(n+l/2) +f(x(n+1)***, t(n+1))]

This scheme is 4th order accurate. Error = O(h®).
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~ Multistep method

These schemes are not covered in detail, but they are very

1
prr1+ah+ —(ah)? + HOT
useful. 2

Here x"+D not only depends on x, but also on the values at
earlier times: x*=1, x*=2_ This is the reason why it is called
multistep method.

1 2
pzz—1+ah—5(ah)

Clearly,

Example: Leap-frog method for which x™ = g P+ apl

n+l) _ (n—1 n n . . . .
XD = X070 4 2R f (™, 1), It is easy to see that p, is a spurious solution. If p, = 0, the

For our usual example i = ax, Leap-frog yields x/x™ = p, which should be compared with its exact counter-
part exp(h) . Note that exp(h) and p, match to O(h?), hence leap-

(n+1) — ,.(n=1) (n)
x - +2ahx™. (1) frog scheme is second-order accurate. But this is achievable

Clearly the solution is of the form p”, whose substitution in only if az is set to zero. This is one of the challenges of this
the above yields scheme.
pn+1 — pn—l + 2ahp" Multistep method
= p2=1+2ahp Advantage: (a) For the same accuracy, 1/2 the calculation

compared to single-step method. Compare with RK2.
= p>—2ahp—-1=0

(b) Leap-frog method is symmetric under time reversal. To go
from x+D to x| the scheme will be

2ah £/ (4ah)* +4 =D — (D) _ 90 ™
= ah =1/ (ah)*+ 1

2 which is same as Eq. (1). This is not the case for Euler’s or
Hence RK2 method.

whose solutions are

P1p =
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Disadvantage: Need to store more variables, e.g., leap-frog
method requires storage of x™ and x~1. Starting at t=0 is also
requires a different method, e.g. Euler’s method.

Other popular mutlistep methods are Adams-Bashforth and
Adams-Moulton methods. The Adams-Bashforth method is writ-
ten as

k
K+ — 4 gy Z ﬂm f(x(n+1—m)’ t(n+1—m))

m=0
with
m= m= m= m= m=
B1m 1
2B2m 3 -1
12B3m 23 -16 5
24B4m 55 -59 37 -9
720B4m 1901 -2774 2616 -1274 251

As illustrations, the two lowest-order Adams-Bashforth
schemes are

XKD = ) 4 (), (00
(n+1) (n) h (n) +(n) (n=1) 4(n—1)
X =X +E[3f(x 9t )_f(x ’t )]

The Adams-Moulton method is written as

k
KD — 4 gy 2 ﬂmf(x(n+1—m), f1=m)y

m=0
with
m= m=1 m=2 m= m=4
B1im 1
2B2m 1 1
12B3m 5 8 -1
24B4m 9 19 -5 1
720B4m 251 646 -264 106 -19

As illustrations, the three lowest-order Adams-Moulton
schemes are

XD = x4 (0D gDy

h
Xt — () E[f(x(nﬂ)’ t(”+1)) +f(x(”), t(”))]

XD — () %[Sf(x(’”l), DY 4 8F(x ™, 1y — 8F (x =D, ¢n=Dy]
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- System. of equation, Stiff equations -

Set of Equations Convert it to 2 first-order ODEs

m equations .
mx =p

xi :f(t,xo,xl,...,xm_l) p =f(X p/m 1)
Numerical scheme:

o Now apply the appropriate integration scheme.
Explicit scheme

xi(n+1) — xi(n) + hf(r, xP, xl(n), . x’gl_)l) Stiff equations

_ _ u+au=v, v=-—y
Time step n equations

whose exact solutions are

v(t) = v(0)exp(—1)

Implicit scheme:
(n+1) _ .(n) (n+1) ..(n+1) (n+1)
X, = X, +hf(t,x0 XX )

1
solve iteratively. u(t) = cy exp(—at) + — exp(~1)

For linear equations, matrix equation. Two different time scales: 1/a, 1
Application to Mechanics If a > 1. Two very different time scales 1/a, 1.
Time stepping a problem

Equation of motion of a particle in 1D Euler explicit scheme:

u+h l—ah h u™
mx = f(x, x,1) p+D | 0 1—hl [,®™
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whose eigenvalues are 1 — ah; 1 — h.
Stability condition (assuming a>1):
ah <?2
Suppose a = 100, then 7 < 2/100 = 0.02.
For large a, h tends to be very small.
For initial condition (u,v) = (2,1).

V() = exp(~1)
1 1

u(t) = (2 ——)exp(—at) + —exp(—1)
a a

Note that both u,v>0 for all t.

Semi implicit scheme like Crank Nicolson method can cure
this problem.

(n) (n+1)
u"™ =4 —qp < = +2M > + hy®™

PO — ) _ gy,

Stable method since

LD — G;—“ZZ) 1™ 4 ™
a

vD = (1 — pyy®
The above scheme is stable for a>0.

Second method: Eliminate by a change of variable

i = explatu

The equations transform to

i =vexp(—at)

Not stiff any more.
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' Leap frog me#fibd, Verlet method#or dynamics

h
Euler first step: v, = vy + EF(XO)

X =V

This scheme is time reversal symmetric
v =F(x)

Under time reversal
Time step

Xpo1 = Xy = hV_ip

Xpr1 =X, AV,
Vi—12 = Vg2 — hF(x,)
V32 = Vpgrp + HEF (X, 41)

That are same as Egs. (1,2).
Note

X, =X, 1 +hv, 1 (1)

V12 = Vaoip + hF(x,) (2)

0 1 2 3 4 5 6 7
\JWWW
\'"J

Init condition: (x,, vy)
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| -Exe]rCi'se '  : o

1. Solve simple oscillator problem (X=-x) using Euler and RK2 Make 3D plots of (x,y,z) for three sets of parameters: (1) P=10,
scheme for h=0.1,0.01,0.001. Analyze the error, and verify r=0.5, B=1; (2) Pr=10, r=2, B=1; (3) Pr=10, r=28, B=1.
the error law. Go over a time period and see if you get
energy conservation to a reasonable accuracy.

2. Solve the oscillator equation using Euler Backward scheme.

3. Solve X = -x + x3 + sin(2 t) using RK2 method for different

initial conditions.

4. Solve Newon’s equation for a pendulum with a massless
string of length | and bob of mass m. Plot the angle and
angular velocity as a function of time. Also make the phase
space plot. It is better to use non-dimensional equation.

5. Solve Lorenz equation numerically:
X =P(y—x)
y=x(r—z)—-y

Z=xy—pz
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